These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 36437289)

  • 1. Spattering mechanism of laser powder bed fusion additive manufacturing on heterogeneous surfaces.
    Ikeshoji TT; Yonehara M; Kato C; Yanaga Y; Takeshita K; Kyogoku H
    Sci Rep; 2022 Nov; 12(1):20384. PubMed ID: 36437289
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Review of Spatter in Laser Powder Bed Fusion Additive Manufacturing: In Situ Detection, Generation, Effects, and Countermeasures.
    Li Z; Li H; Yin J; Li Y; Nie Z; Li X; You D; Guan K; Duan W; Cao L; Wang D; Ke L; Liu Y; Zhao P; Wang L; Zhu K; Zhang Z; Gao L; Hao L
    Micromachines (Basel); 2022 Aug; 13(8):. PubMed ID: 36014288
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Methodology to Determine Melt Pool Anomalies in Powder Bed Fusion of Metals Using a Laser Beam by Means of Process Monitoring and Sensor Data Fusion.
    Harbig J; Wenzler DL; Baehr S; Kick MK; Merschroth H; Wimmer A; Weigold M; Zaeh MF
    Materials (Basel); 2022 Feb; 15(3):. PubMed ID: 35161208
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Process Monitoring Using Synchronized Path Infrared Thermography in PBF-LB/M.
    Höfflin D; Sauer C; Schiffler A; Hartmann J
    Sensors (Basel); 2022 Aug; 22(16):. PubMed ID: 36015704
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical Simulation in the Melt Pool Evolution of Laser Powder Bed Fusion Process for Ti6Al4V.
    Xu Y; Zhang D; Deng J; Wu X; Li L; Xie Y; Poprawe R; Schleifenbaum JH; Ziegler S
    Materials (Basel); 2022 Oct; 15(21):. PubMed ID: 36363176
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterizing the effects of laser control in laser powder bed fusion on near-surface pore formation via combined analysis of in-situ melt pool monitoring and X-ray computed tomography.
    Kim FH; Yeung H; Garboczi EJ
    Addit Manuf; 2021 Dec; 48(A):. PubMed ID: 36733468
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Continuous Comprehensive Monitoring of Melt Pool Morphology Under Realistic Printing Scenarios with Laser Powder Bed Fusion.
    Vallabh CKP; Zhao X
    3D Print Addit Manuf; 2023 Feb; 10(1):101-110. PubMed ID: 36998791
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In-Situ Alloy Formation of a WMoTaNbV Refractory Metal High Entropy Alloy by Laser Powder Bed Fusion (PBF-LB/M).
    Huber F; Bartels D; Schmidt M
    Materials (Basel); 2021 Jun; 14(11):. PubMed ID: 34200096
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiple Sensor Detection of Process Phenomena in Laser Powder Bed Fusion.
    Lane B; Whitenton E; Moylan S
    Proc SPIE Int Soc Opt Eng; 2016; 986104():. PubMed ID: 32165779
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Online Monitoring Technology of Metal Powder Bed Fusion Processes: A Review.
    Hou ZJ; Wang Q; Zhao CG; Zheng J; Tian JM; Ge XH; Liu YG
    Materials (Basel); 2022 Oct; 15(21):. PubMed ID: 36363190
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Part geometry and conduction-based laser power control for powder bed fusion additive manufacturing.
    Yeung H; Lane B; Fox J
    Addit Manuf; 2019 Dec; 30():. PubMed ID: 34141600
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Melt Pool Shape Evaluation by Single-Track Experiments and Finite-Element Thermal Analysis: Balling and Lack of Fusion Criteria for Generating Process Window of Inconel738LC.
    Katagiri J; Kusano M; Minamoto S; Kitano H; Daimaru K; Tsujii M; Watanabe M
    Materials (Basel); 2023 Feb; 16(4):. PubMed ID: 36837360
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Correlation between surface texture and internal defects in laser powder-bed fusion additive manufacturing.
    Yonehara M; Kato C; Ikeshoji TT; Takeshita K; Kyogoku H
    Sci Rep; 2021 Nov; 11(1):22874. PubMed ID: 34819561
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In situ X-ray imaging of defect and molten pool dynamics in laser additive manufacturing.
    Leung CLA; Marussi S; Atwood RC; Towrie M; Withers PJ; Lee PD
    Nat Commun; 2018 Apr; 9(1):1355. PubMed ID: 29636443
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrafast X-ray imaging of laser-metal additive manufacturing processes.
    Parab ND; Zhao C; Cunningham R; Escano LI; Fezzaa K; Everhart W; Rollett AD; Chen L; Sun T
    J Synchrotron Radiat; 2018 Sep; 25(Pt 5):1467-1477. PubMed ID: 30179187
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Laser Polishing of Additive Manufactured Aluminium Parts by Modulated Laser Power.
    Hofele M; Roth A; Schanz J; Neuer J; Harrison DK; De Silva AKM; Riegel H
    Micromachines (Basel); 2021 Oct; 12(11):. PubMed ID: 34832744
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stability of a Melt Pool during 3D-Printing of an Unsupported Steel Component and Its Influence on Roughness.
    Skalon M; Meier B; Gruberbauer A; Amancio-Filho ST; Sommitsch C
    Materials (Basel); 2020 Feb; 13(3):. PubMed ID: 32050719
    [No Abstract]   [Full Text] [Related]  

  • 18. 3D Modeling of the Solidification Structure Evolution and of the Inter Layer/Track Voids Formation in Metallic Alloys Processed by Powder Bed Fusion Additive Manufacturing.
    Nastac L
    Materials (Basel); 2022 Dec; 15(24):. PubMed ID: 36556692
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Laser spot size and scaling laws for laser beam additive manufacturing.
    Weaver JS; Heigel JC; Lane BM
    J Mater Process Technol; 2022 Jan; 73():. PubMed ID: 36733901
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toward determining melt pool quality metrics via coaxial monitoring in laser powder bed fusion.
    Fisher BA; Lane B; Yeung H; Beuth J
    Manuf Lett; 2018 Jan; 15(Pt B):119-121. PubMed ID: 29888171
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.