These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 36437361)
1. Risk identification and analysis for the green redevelopment of industrial brownfields: a social network analysis. Zhang Y; Wang S; Wang C; Luo X Environ Sci Pollut Res Int; 2023 Mar; 30(11):30557-30571. PubMed ID: 36437361 [TBL] [Abstract][Full Text] [Related]
2. Sustainable brownfield redevelopment and planning: Bibliometric and visual analysis. Zheng B; Masrabaye F Heliyon; 2023 Feb; 9(2):e13280. PubMed ID: 36816311 [TBL] [Abstract][Full Text] [Related]
3. Quantifying the core driving force for the sustainable redevelopment of industrial heritage: implications for urban renewal. Guo P; Li Q; Guo H; Li H Environ Sci Pollut Res Int; 2021 Sep; 28(35):48097-48111. PubMed ID: 33904128 [TBL] [Abstract][Full Text] [Related]
4. Reconsidering brownfield redevelopment strategy in China's old industrial zone: a health risk assessment of heavy metal contamination. Ren W; Geng Y; Ma Z; Sun L; Xue B; Fujita T Environ Sci Pollut Res Int; 2015 Feb; 22(4):2765-75. PubMed ID: 25205156 [TBL] [Abstract][Full Text] [Related]
5. Research on brownfield redevelopment based on Wuli-Shili-Renli system theory and catastrophe progression method. Jian H; Hao H; Haize P; Chuan L; Xiaoqin L; Yan W; Haidan J; Changliang Z PLoS One; 2022; 17(11):e0277324. PubMed ID: 36395184 [TBL] [Abstract][Full Text] [Related]
6. Spatial Identification and Redevelopment Evaluation of Brownfields in the Perspective of Urban Complex Ecosystems: A Case of Wuhu City, China. Wang Z; Chen X; Huang N; Yang Y; Wang L; Wang Y Int J Environ Res Public Health; 2022 Jan; 19(1):. PubMed ID: 35010739 [TBL] [Abstract][Full Text] [Related]
7. Stakeholder Analysis and Social Network Analysis in the Decision-Making of Industrial Land Redevelopment in China: The Case of Shanghai. Wu W; He F; Zhuang T; Yi Y Int J Environ Res Public Health; 2020 Dec; 17(24):. PubMed ID: 33317126 [TBL] [Abstract][Full Text] [Related]
8. The redevelopment mode selection framework for Third Front Brownfields in China. Liu G; Li Z; Han Q; Zhang H Environ Sci Pollut Res Int; 2023 Mar; 30(12):33061-33074. PubMed ID: 36472731 [TBL] [Abstract][Full Text] [Related]
9. Integration of the subsurface and the surface sectors for a more holistic approach for sustainable redevelopment of urban brownfields. Norrman J; Volchko Y; Hooimeijer F; Maring L; Kain JH; Bardos P; Broekx S; Beames A; Rosén L Sci Total Environ; 2016 Sep; 563-564():879-89. PubMed ID: 26927965 [TBL] [Abstract][Full Text] [Related]
10. Examining urban brownfields through the public health "macroscope". Litt JS; Tran NL; Burke TA Environ Health Perspect; 2002 Apr; 110 Suppl 2(Suppl 2):183-93. PubMed ID: 11929727 [TBL] [Abstract][Full Text] [Related]
11. A critical review of decision support systems for brownfield redevelopment. Hammond EB; Coulon F; Hallett SH; Thomas R; Hardy D; Kingdon A; Beriro DJ Sci Total Environ; 2021 Sep; 785():147132. PubMed ID: 33957586 [TBL] [Abstract][Full Text] [Related]
12. Brownfield redevelopment evaluation based on structure-process-outcome theory and continuous ordered weighted averaging operator-topology method. Jian H; Hao H; Haidan J; Haize P; Chuan L Sci Rep; 2023 Oct; 13(1):17530. PubMed ID: 37845278 [TBL] [Abstract][Full Text] [Related]
13. Sustainable Brownfields Redevelopment in the European Union: An Overview of Policy and Funding Frameworks. Morar C; Berman L; Unkart S; Erdal S J Environ Health; 2021 Nov; 84(4):24-31. PubMed ID: 35350129 [TBL] [Abstract][Full Text] [Related]
14. Restoration priority assessment of coal mining brownfields from the perspective of enhancing the connectivity of green infrastructure networks. Hou W; Zhai L; Feng S; Walz U J Environ Manage; 2021 Jan; 277():111289. PubMed ID: 33075654 [TBL] [Abstract][Full Text] [Related]
15. Targeted selection of brownfields from portfolios for sustainable regeneration: User experiences from five cases testing the Timbre Brownfield Prioritization Tool. Bartke S; Martinát S; Klusáček P; Pizzol L; Alexandrescu F; Frantál B; Critto A; Zabeo A J Environ Manage; 2016 Dec; 184(Pt 1):94-107. PubMed ID: 27452774 [TBL] [Abstract][Full Text] [Related]
16. Timbre Brownfield Prioritization Tool to support effective brownfield regeneration. Pizzol L; Zabeo A; Klusáček P; Giubilato E; Critto A; Frantál B; Martinát S; Kunc J; Osman R; Bartke S J Environ Manage; 2016 Jan; 166():178-92. PubMed ID: 26496848 [TBL] [Abstract][Full Text] [Related]
17. Designing sustainable and economically attractive brownfield revitalization options using an integrated assessment model. Schädler S; Morio M; Bartke S; Rohr-Zänker R; Finkel M J Environ Manage; 2011 Mar; 92(3):827-37. PubMed ID: 21051134 [TBL] [Abstract][Full Text] [Related]
18. From data to decisions: Empowering brownfield redevelopment with a novel decision support system. Hammond EB; Coulon F; Hallett SH; Thomas R; Dick A; Hardy D; Dickens M; Washbourn E; Beriro DJ J Environ Manage; 2023 Dec; 347():119145. PubMed ID: 37806270 [TBL] [Abstract][Full Text] [Related]
19. Distinguishing Characteristics of Corruption Risks in Iranian Construction Projects: A Weighted Correlation Network Analysis. Hosseini MR; Martek I; Banihashemi S; Chan APC; Darko A; Tahmasebi M Sci Eng Ethics; 2020 Feb; 26(1):205-231. PubMed ID: 30725393 [TBL] [Abstract][Full Text] [Related]
20. Research on the coordination mechanism of major industrial project engineering and construction multi-agents based on structural holes theory. Han X; Yan W; Lu M PLoS One; 2021; 16(8):e0255858. PubMed ID: 34379651 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]