BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 36437664)

  • 1. Numerical modeling of sneeze airflow and its validation with an experimental dataset.
    Oh W; Ooka R; Kikumoto H; Han M
    Indoor Air; 2022 Nov; 32(11):e13171. PubMed ID: 36437664
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental measurements of airflow features and velocity distribution exhaled from sneeze and speech using particle image velocimetry.
    Han M; Ooka R; Kikumoto H; Oh W; Bu Y; Hu S
    Build Environ; 2021 Nov; 205():108293. PubMed ID: 34908645
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of indoor temperature on the velocity fields and airborne transmission of sneeze droplets: An experimental study and transient CFD modeling.
    Bahramian A; Mohammadi M; Ahmadi G
    Sci Total Environ; 2023 Feb; 858(Pt 2):159444. PubMed ID: 36252673
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new methodology for studying dynamics of aerosol particles in sneeze and cough using a digital high-vision, high-speed video system and vector analyses.
    Nishimura H; Sakata S; Kaga A
    PLoS One; 2013; 8(11):e80244. PubMed ID: 24312206
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Airflow dynamics of human jets: sneezing and breathing - potential sources of infectious aerosols.
    Tang JW; Nicolle AD; Klettner CA; Pantelic J; Wang L; Suhaimi AB; Tan AY; Ong GW; Su R; Sekhar C; Cheong DD; Tham KW
    PLoS One; 2013; 8(4):e59970. PubMed ID: 23560060
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computer simulations of pressure and velocity fields in a human upper airway during sneezing.
    Rahiminejad M; Haghighi A; Dastan A; Abouali O; Farid M; Ahmadi G
    Comput Biol Med; 2016 Apr; 71():115-27. PubMed ID: 26914240
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In silico investigation of sneezing in a full real human upper airway using computational fluid dynamics method.
    Mortazavy Beni H; Hassani K; Khorramymehr S
    Comput Methods Programs Biomed; 2019 Aug; 177():203-209. PubMed ID: 31319949
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational fluid dynamics modeling of cough transport in an aircraft cabin.
    Zee M; Davis AC; Clark AD; Wu T; Jones SP; Waite LL; Cummins JJ; Olson NA
    Sci Rep; 2021 Dec; 11(1):23329. PubMed ID: 34857807
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Large eddy simulation of sneeze plumes and particles in a poorly ventilated outdoor air condition: A case study of the University of Houston main campus.
    Zanganeh Kia H; Choi Y; Nelson D; Park J; Pouyaei A
    Sci Total Environ; 2023 Sep; 891():164694. PubMed ID: 37290661
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes in mechanics of breathing during experimental cough and sneeze in anaesthetized cats.
    Kulisek V; Tomori Z
    Acta Physiol Hung; 1987; 70(2-3):263-7. PubMed ID: 3434306
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Boundary conditions for exhaled airflow from a cough with a surgical or N95 mask.
    Pan Y; Zhang H; Niu Z; An Y; Chen C
    Indoor Air; 2022 Aug; 32(8):e13088. PubMed ID: 36040272
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measurements of exhaled airflow velocity through human coughs using particle image velocimetry.
    Han M; Ooka R; Kikumoto H; Oh W; Bu Y; Hu S
    Build Environ; 2021 Sep; 202():108020. PubMed ID: 34127875
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative Microbial Risk Assessment for Airborne Transmission of SARS-CoV-2 via Breathing, Speaking, Singing, Coughing, and Sneezing.
    Schijven J; Vermeulen LC; Swart A; Meijer A; Duizer E; de Roda Husman AM
    Environ Health Perspect; 2021 Apr; 129(4):47002. PubMed ID: 33793301
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessing Airflow Sensitivity to Healthy and Diseased Lung Conditions in a Computational Fluid Dynamics Model Validated In Vitro.
    Sul B; Oppito Z; Jayasekera S; Vanger B; Zeller A; Morris M; Ruppert K; Altes T; Rakesh V; Day S; Robinson R; Reifman J; Wallqvist A
    J Biomech Eng; 2018 May; 140(5):. PubMed ID: 29305603
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dispersion of sneeze droplets in a meat facility indoor environment - Without partitions.
    Kumar S; Klassen M; Klassen D; Hardin R; King MD
    Environ Res; 2023 Nov; 236(Pt 1):116603. PubMed ID: 37454802
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coupling Computational Fluid Dynamics Simulations and Statistical Moments for Designing Healthy Indoor Spaces.
    Hoque S; Omar FB
    Int J Environ Res Public Health; 2019 Mar; 16(5):. PubMed ID: 30841556
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Sneezing as a mechanical defence - a numerical simulation and analysis of the nasal flow].
    Sommer F; Scheithauer M; Kröger R; Rettinger G; Lindemann J
    Laryngorhinootologie; 2014 Nov; 93(11):746-50. PubMed ID: 25369158
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental investigation of far-field human cough airflows from healthy and influenza-infected subjects.
    Dudalski N; Mohamed A; Mubareka S; Bi R; Zhang C; Savory E
    Indoor Air; 2020 Sep; 30(5):966-977. PubMed ID: 32304605
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental visualization of sneezing and efficacy of face masks and shields.
    Arumuru V; Pasa J; Samantaray SS
    Phys Fluids (1994); 2020 Nov; 32(11):115129. PubMed ID: 33244217
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Understanding Transmission Dynamics of COVID-19-Type Infections by Direct Numerical Simulations of Cough/Sneeze Flows.
    Diwan SS; Ravichandran S; Govindarajan R; Narasimha R
    Trans Indian Natl Acad Eng; 2020; 5(2):255-261. PubMed ID: 38624374
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.