These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 36437710)

  • 1. Schottky diodes based on blue phosphorene nanoribbon homojunctions.
    Liu YH; Lu XQ; Dong MM; Zhang GP; Li ZL; Wang CK; Fu XX
    Phys Chem Chem Phys; 2022 Dec; 24(47):29057-29063. PubMed ID: 36437710
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulating the electronic structures of blue phosphorene towards spintronics.
    Lu XQ; Wang CK; Fu XX
    Phys Chem Chem Phys; 2019 Jun; 21(22):11755-11763. PubMed ID: 31114815
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface engineering of phosphorene nanoribbons by transition metal heteroatoms for spintronics.
    Dong MM; Wang ZQ; Zhang GP; Wang CK; Fu XX
    Phys Chem Chem Phys; 2019 Feb; 21(9):4879-4887. PubMed ID: 30778495
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface decoration of phosphorene nanoribbons with 4d transition metal atoms for spintronics.
    Fu XX; Niu Y; Hao ZW; Dong MM; Wang CK
    Phys Chem Chem Phys; 2020 Jul; 22(28):16063-16071. PubMed ID: 32633289
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphorene nanoribbon as a promising candidate for thermoelectric applications.
    Zhang J; Liu HJ; Cheng L; Wei J; Liang JH; Fan DD; Shi J; Tang XF; Zhang QJ
    Sci Rep; 2014 Sep; 4():6452. PubMed ID: 25245326
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electronic structures, transport properties, and optical absorption of bilayer blue phosphorene nanoribbons.
    Gong LJ; Shi HL; Yang J; Han QZ; Ren YH; He SY; Zhao YH; Jiang ZT
    Phys Chem Chem Phys; 2023 Aug; 25(33):22487-22496. PubMed ID: 37581353
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rectifying Performance of Heterojunction Based on α-Borophene Nanoribbons with Edge Passivation.
    Yu G; Ding W; Xiao X; Li X; Zhou G
    Nanoscale Res Lett; 2020 Sep; 15(1):185. PubMed ID: 32970277
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Signature of excitonic insulators in phosphorene nanoribbons.
    Felipe Pereira de Oliveira A; Luisa da Rosa A; Cavalheiro Dias A
    J Phys Condens Matter; 2024 May; 36(34):. PubMed ID: 38744299
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electronic Properties of Armchair Black Phosphorene Nanoribbons Edge-Modified by Transition Elements V, Cr, and Mn.
    Huang JH; Wang XF; Liu YS; Zhou LP
    Nanoscale Res Lett; 2019 Apr; 14(1):145. PubMed ID: 31030371
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tunnable rectifying performance of in-plane metal-semiconductor junctions based on passivated zigzag phosphorene nanoribbons.
    Su S; Gong J; Fan ZQ
    RSC Adv; 2018 Sep; 8(55):31255-31260. PubMed ID: 35548223
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Half-metallic and magnetic semiconducting behaviors of metal-doped blue phosphorus nanoribbons from first-principles calculations.
    Zhu SC; Yip CT; Peng SJ; Wu KM; Yao KL; Mak CL; Lam CH
    Phys Chem Chem Phys; 2018 Mar; 20(11):7635-7642. PubMed ID: 29497734
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrogenated cove-edge aluminum nitride nanoribbons for ultrascaled resonant tunneling diode applications: a computational DFT study.
    Kharwar S; Singh S; Kaushik BK
    Nanotechnology; 2023 Mar; 34(24):. PubMed ID: 36857765
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low-bias negative differential resistance in junction of a benzene between zigzag-edged phosphorene nanoribbons.
    Jia C; Cao L; Zhou X; Zhou B; Zhou G
    J Phys Condens Matter; 2018 Jul; 30(26):265301. PubMed ID: 29762129
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The electronic transport properties of zigzag phosphorene-like MX (M = Ge/Sn, X = S/Se) nanostructures.
    Zhang M; An Y; Sun Y; Wu D; Chen X; Wang T; Xu G; Wang K
    Phys Chem Chem Phys; 2017 Jul; 19(26):17210-17215. PubMed ID: 28639663
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Switchable Schottky Contacts: Simultaneously Enhanced Output Current and Reduced Leakage Current.
    Su G; Yang S; Li S; Butch CJ; Filimonov SN; Ren JC; Liu W
    J Am Chem Soc; 2019 Jan; 141(4):1628-1635. PubMed ID: 30608672
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimum Contact Configurations for Quasi-One-Dimensional Phosphorene Nanodevices.
    Poljak M; Matić M
    Nanomaterials (Basel); 2023 May; 13(11):. PubMed ID: 37299662
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carbon nanotube Schottky diode: an atomic perspective.
    Bai P; Li E; Lam KT; Kurniawan O; Koh WS
    Nanotechnology; 2008 Mar; 19(11):115203. PubMed ID: 21730550
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-performance diodes based on black phosphorus/carbon nanomaterial heterostructures.
    Ye X; Zhang Y; Gao S; Zhao X; Xu K; Wang L; Jiang S; Shi F; Yang J; Cao Z; Chen C
    Nanoscale Adv; 2023 May; 5(9):2427-2436. PubMed ID: 37143813
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electronic transport through zigzag/armchair graphene nanoribbon heterojunctions.
    Li XF; Wang LL; Chen KQ; Luo Y
    J Phys Condens Matter; 2012 Mar; 24(9):095801. PubMed ID: 22317831
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electronic and transport properties of zigzag phosphorene nanoribbons with nonmetallic atom terminations.
    Sun L; Zhang ZH; Wang H; Li M
    RSC Adv; 2020 Jan; 10(3):1400-1409. PubMed ID: 35494722
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.