These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 36438116)

  • 1. Measurement of morphological changes of pear leaves in airflow based on high-speed photography.
    Zhang C; Zhou H; Xu L; Ru Y; Ju H; Chen Q
    Front Plant Sci; 2022; 13():900427. PubMed ID: 36438116
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resistance characteristics of broad-leaf crop canopy in air-assisted spray field and their effects on droplet deposition.
    Wu S; Liu J; Zhen J; Lei X; Chen Y
    Front Plant Sci; 2022; 13():924749. PubMed ID: 35909749
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational fluid dynamics simulation experimental verification and analysis of droplets deposition behaviour on vibrating pear leaves.
    Cao Y; Xi T; Xu L; Qiu W; Guo H; Lv X; Li C
    Plant Methods; 2022 Jun; 18(1):80. PubMed ID: 35690789
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wetting and deposition characteristics of air-assisted spray droplet on large broad-leaved crop canopy.
    Jiang Y; Yang Z; Xu X; Shen D; Jiang T; Xie B; Duan J
    Front Plant Sci; 2023; 14():1079703. PubMed ID: 36743480
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Model construction and validation of airflow velocity attenuation through pear tree canopies.
    Zhang F; Sun H; Qiu W; Lv X; Chen Y; Zhao G
    Front Plant Sci; 2022; 13():1026503. PubMed ID: 36426153
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biohybrid generators based on living plants and artificial leaves: influence of leaf motion and real wind outdoor energy harvesting.
    Meder F; Armiento S; Naselli GA; Thielen M; Speck T; Mazzolai B
    Bioinspir Biomim; 2021 Aug; 16(5):. PubMed ID: 34293725
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Laser Displacement Sensors for Wind Tunnel Model Position Measurements.
    Kuester M; Intaratep N; Borgoltz A
    Sensors (Basel); 2018 Nov; 18(12):. PubMed ID: 30469493
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Foliage motion under wind, from leaf flutter to branch buffeting.
    Tadrist L; Saudreau M; Hémon P; Amandolese X; Marquier A; Leclercq T; de Langre E
    J R Soc Interface; 2018 May; 15(142):. PubMed ID: 29743271
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Herbivores alter plant-wind interactions by acting as a point mass on leaves and by removing leaf tissue.
    Kothari AR; Burnett NP
    Ecol Evol; 2017 Sep; 7(17):6884-6893. PubMed ID: 28904768
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wind and mechanical stimuli differentially affect leaf traits in Plantago major.
    Anten NP; Alcalá-Herrera R; Schieving F; Onoda Y
    New Phytol; 2010 Oct; 188(2):554-64. PubMed ID: 20663062
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wind dynamics and leaf motion: Approaching the design of high-tech devices for energy harvesting for operation on plant leaves.
    Meder F; Naselli GA; Mazzolai B
    Front Plant Sci; 2022; 13():994429. PubMed ID: 36388505
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acclimation to wind loads and/or contact stimuli? A biomechanical study of peltate leaves of Pilea peperomioides.
    Langer M; Hegge E; Speck T; Speck O
    J Exp Bot; 2022 Feb; 73(4):1236-1252. PubMed ID: 34893822
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of conifer and broad-leaved barriers in intercepting particulate matters in a wind tunnel.
    Guo L; Zhao B; Zhao D; Li J; Tong J; Chang Z; Liu X
    J Air Waste Manag Assoc; 2020 Dec; 70(12):1314-1323. PubMed ID: 32703090
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An electrical vortex air-assisted spraying system for improving droplet deposition on rice.
    Qiu W; Guo H; Cao Y; Li X; Wu J; Chen Y; Yu H; Zhang Z
    Pest Manag Sci; 2022 Oct; 78(10):4037-4047. PubMed ID: 35638857
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Morphological Response of Eight Quercus Species to Simulated Wind Load.
    Wu T; Zhang P; Zhang L; Wang GG; Yu M
    PLoS One; 2016; 11(9):e0163613. PubMed ID: 27662594
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Resuspension of settled atmospheric particulate matter on plant leaves determined by wind and leaf surface characteristics.
    Zheng G; Li P
    Environ Sci Pollut Res Int; 2019 Jul; 26(19):19606-19614. PubMed ID: 31079301
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Underground anemotactic orientation in leaf-cutting ants: perception of airflow and experience-dependent choice of airflow direction during digging.
    Halboth F; Roces F
    Naturwissenschaften; 2017 Sep; 104(9-10):82. PubMed ID: 28929237
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Go with the flow: The extent of drag reduction as epiphytic bromeliads reorient in wind.
    Tay JYL; Zotz G; Puczylowski J; Einzmann HJR
    PLoS One; 2021; 16(6):e0252790. PubMed ID: 34166417
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How wind drives the correlation between leaf shape and mechanical properties.
    Louf JF; Nelson L; Kang H; Song PN; Zehnbauer T; Jung S
    Sci Rep; 2018 Nov; 8(1):16314. PubMed ID: 30397247
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The leaf development process and its significance for reducing self-shading of a tropical pioneer tree species.
    Yamada T; Okuda T; Abdullah M; Awang M; Furukawa A
    Oecologia; 2000 Dec; 125(4):476-482. PubMed ID: 28547216
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.