BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 36438117)

  • 1. Rapid nondestructive detection of peanut varieties and peanut mildew based on hyperspectral imaging and stacked machine learning models.
    Wu Q; Xu L; Zou Z; Wang J; Zeng Q; Wang Q; Zhen J; Wang Y; Zhao Y; Zhou M
    Front Plant Sci; 2022; 13():1047479. PubMed ID: 36438117
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detection of peanut seed vigor based on hyperspectral imaging and chemometrics.
    Zou Z; Chen J; Wu W; Luo J; Long T; Wu Q; Wang Q; Zhen J; Zhao Y; Wang Y; Chen Y; Zhou M; Xu L
    Front Plant Sci; 2023; 14():1127108. PubMed ID: 36923124
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Variety classification of coated maize seeds based on Raman hyperspectral imaging.
    Liu Q; Wang Z; Long Y; Zhang C; Fan S; Huang W
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Apr; 270():120772. PubMed ID: 34973616
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nondestructive Detection of Sunflower Seed Vigor and Moisture Content Based on Hyperspectral Imaging and Chemometrics.
    Huang P; Yuan J; Yang P; Xiao F; Zhao Y
    Foods; 2024 Apr; 13(9):. PubMed ID: 38731691
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nondestructive Classification of Maize Moldy Seeds by Hyperspectral Imaging and Optimal Machine Learning Algorithms.
    Hu Y; Wang Z; Li X; Li L; Wang X; Wei Y
    Sensors (Basel); 2022 Aug; 22(16):. PubMed ID: 36015825
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nondestructive Classification of Soybean Seed Varieties by Hyperspectral Imaging and Ensemble Machine Learning Algorithms.
    Wei Y; Li X; Pan X; Li L
    Sensors (Basel); 2020 Dec; 20(23):. PubMed ID: 33297289
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hyperspectral Imaging and Machine Learning as a Nondestructive Method for Proso Millet Seed Detection and Classification.
    Ekramirad N; Doyle L; Loeb J; Santra D; Adedeji AA
    Foods; 2024 Apr; 13(9):. PubMed ID: 38731705
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detection of wheat saccharification power and protein content using stacked models integrated with hyperspectral imaging.
    Huang Y; Tian J; Yang H; Hu X; Han L; Fei X; He K; Liang Y; Xie L; Huang D; Zhang H
    J Sci Food Agric; 2024 May; 104(7):4145-4156. PubMed ID: 38294322
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recognition of maize seed varieties based on hyperspectral imaging technology and integrated learning algorithms.
    Yang H; Wang C; Zhang H; Zhou Y; Luo B
    PeerJ Comput Sci; 2023; 9():e1354. PubMed ID: 37346683
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sugarbeet Seed Germination Prediction Using Hyperspectral Imaging Information Fusion.
    Wang J; Sun L; Xing W; Feng G; Yang J; Li J; Li W
    Appl Spectrosc; 2023 Jul; 77(7):710-722. PubMed ID: 37246428
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Research on moldy tea feature classification based on WKNN algorithm and NIR hyperspectral imaging.
    Xin Z; Jun S; Xiaohong W; Bing L; Ning Y; Chunxia D
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Jan; 206():378-383. PubMed ID: 30157445
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Age Classification of Rice Seeds in Japan Using Gradient-Boosting and ANFIS Algorithms.
    Rathnayake N; Miyazaki A; Dang TL; Hoshino Y
    Sensors (Basel); 2023 Mar; 23(5):. PubMed ID: 36905032
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Variety recognition of Chinese cabbage seeds by hyperspectral imaging combined with machine learning].
    Cheng SX; Kong WW; Zhang C; Liu F; He Y
    Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Sep; 34(9):2519-22. PubMed ID: 25532356
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection of seed purity of hybrid wheat using reflectance and transmittance hyperspectral imaging technology.
    Zhang H; Hou Q; Luo B; Tu K; Zhao C; Sun Q
    Front Plant Sci; 2022; 13():1015891. PubMed ID: 36247557
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection of Oil Chestnuts Infected by Blue Mold Using Near-Infrared Hyperspectral Imaging Combined with Artificial Neural Networks.
    Feng L; Zhu S; Lin F; Su Z; Yuan K; Zhao Y; He Y; Zhang C
    Sensors (Basel); 2018 Jun; 18(6):. PubMed ID: 29914074
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Leaf area index estimation model for UAV image hyperspectral data based on wavelength variable selection and machine learning methods.
    Zhang J; Cheng T; Guo W; Xu X; Qiao H; Xie Y; Ma X
    Plant Methods; 2021 May; 17(1):49. PubMed ID: 33941211
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of Defective Maize Seeds Using Hyperspectral Imaging Combined with Deep Learning.
    Xu P; Sun W; Xu K; Zhang Y; Tan Q; Qing Y; Yang R
    Foods; 2022 Dec; 12(1):. PubMed ID: 36613360
    [TBL] [Abstract][Full Text] [Related]  

  • 18. HyperSeed: An End-to-End Method to Process Hyperspectral Images of Seeds.
    Gao T; Chandran AKN; Paul P; Walia H; Yu H
    Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960287
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Research on non-destructive testing of hotpot oil quality by fluorescence hyperspectral technology combined with machine learning.
    Zou Z; Wu Q; Wang J; Xu L; Zhou M; Lu Z; He Y; Wang Y; Liu B; Zhao Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Jan; 284():121785. PubMed ID: 36058172
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of Moldy Peanuts under Different Varieties and Moisture Content Using Hyperspectral Imaging and Data Augmentation Technologies.
    Liu Z; Jiang J; Li M; Yuan D; Nie C; Sun Y; Zheng P
    Foods; 2022 Apr; 11(8):. PubMed ID: 35454743
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.