These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 36438155)

  • 1. Global analysis of common bean multidrug and toxic compound extrusion transporters (PvMATEs): PvMATE8 and pinto bean seed coat darkening.
    Islam NS; Duwadi K; Chen L; Pajak A; McDowell T; Marsolais F; Dhaubhadel S
    Front Plant Sci; 2022; 13():1046597. PubMed ID: 36438155
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Postharvest seed coat darkening in pinto bean (
    Islam NS; Bett KE; Pauls KP; Marsolais F; Dhaubhadel S
    Plants People Planet; 2020 Nov; 2(6):663-677. PubMed ID: 34268482
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Slow darkening of pinto bean seed coat is associated with significant metabolite and transcript differences related to proanthocyanidin biosynthesis.
    Duwadi K; Austin RS; Mainali HR; Bett K; Marsolais F; Dhaubhadel S
    BMC Genomics; 2018 Apr; 19(1):260. PubMed ID: 29661146
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proanthocyanidin accumulation and transcriptional responses in the seed coat of cranberry beans (Phaseolus vulgaris L.) with different susceptibility to postharvest darkening.
    Freixas Coutin JA; Munholland S; Silva A; Subedi S; Lukens L; Crosby WL; Pauls KP; Bozzo GG
    BMC Plant Biol; 2017 May; 17(1):89. PubMed ID: 28545577
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A R2R3-MYB gene-based marker for the non-darkening seed coat trait in pinto and cranberry beans (Phaseolus vulgaris L.) derived from 'Wit-rood boontje'.
    Erfatpour M; Pauls KP
    Theor Appl Genet; 2020 Jun; 133(6):1977-1994. PubMed ID: 32112124
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MATE transporters facilitate vacuolar uptake of epicatechin 3'-O-glucoside for proanthocyanidin biosynthesis in Medicago truncatula and Arabidopsis.
    Zhao J; Dixon RA
    Plant Cell; 2009 Aug; 21(8):2323-40. PubMed ID: 19684242
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mapping the non-darkening trait from 'Wit-rood boontje' in bean (Phaseolus vulgaris).
    Erfatpour M; Navabi A; Pauls KP
    Theor Appl Genet; 2018 Jun; 131(6):1331-1343. PubMed ID: 29502138
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome-wide association mapping reveals new loci associated with light-colored seed coat at harvest and slow darkening in carioca beans.
    de Almeida CP; Santos IL; de Carvalho Paulino JF; Barbosa CCF; Pereira CCA; Carvalho CRL; de Moraes Cunha Gonçalves G; Song Q; Carbonell SAM; Chiorato AF; Benchimol-Reis LL
    BMC Plant Biol; 2021 Jul; 21(1):343. PubMed ID: 34284717
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Arabidopsis MATE transporter TT12 acts as a vacuolar flavonoid/H+ -antiporter active in proanthocyanidin-accumulating cells of the seed coat.
    Marinova K; Pourcel L; Weder B; Schwarz M; Barron D; Routaboul JM; Debeaujon I; Klein M
    Plant Cell; 2007 Jun; 19(6):2023-38. PubMed ID: 17601828
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polyphenol oxidase activity and differential accumulation of polyphenolics in seed coats of pinto bean (Phaseolus vulgaris L.) characterize postharvest color changes.
    Marles MA; Vandenberg A; Bett KE
    J Agric Food Chem; 2008 Aug; 56(16):7049-56. PubMed ID: 18666779
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in polyphenols of the seed coat during the after-darkening process in pinto beans (Phaseolus vulgaris L.).
    Beninger CW; Gu L; Prior RL; Junk DC; Vandenberg A; Bett KE
    J Agric Food Chem; 2005 Oct; 53(20):7777-82. PubMed ID: 16190630
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic profiling and cytological analysis of proanthocyanidins in immature seeds of Arabidopsis thaliana flavonoid accumulation mutants.
    Kitamura S; Matsuda F; Tohge T; Yonekura-Sakakibara K; Yamazaki M; Saito K; Narumi I
    Plant J; 2010 May; 62(4):549-59. PubMed ID: 20180920
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of seed coat post harvest darkening in common bean (Phaseolus vulgaris L.).
    Elsadr HT; Wright LC; Pauls KP; Bett KE
    Theor Appl Genet; 2011 Dec; 123(8):1467-72. PubMed ID: 21863347
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A plasma membrane H+-ATPase is required for the formation of proanthocyanidins in the seed coat endothelium of Arabidopsis thaliana.
    Baxter IR; Young JC; Armstrong G; Foster N; Bogenschutz N; Cordova T; Peer WA; Hazen SP; Murphy AS; Harper JF
    Proc Natl Acad Sci U S A; 2005 Feb; 102(7):2649-54. PubMed ID: 15695592
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The TRANSPARENT TESTA12 gene of Arabidopsis encodes a multidrug secondary transporter-like protein required for flavonoid sequestration in vacuoles of the seed coat endothelium.
    Debeaujon I; Peeters AJ; Léon-Kloosterziel KM; Koornneef M
    Plant Cell; 2001 Apr; 13(4):853-71. PubMed ID: 11283341
    [TBL] [Abstract][Full Text] [Related]  

  • 16. TRANSPARENT TESTA 13 is a tonoplast P3A -ATPase required for vacuolar deposition of proanthocyanidins in Arabidopsis thaliana seeds.
    Appelhagen I; Nordholt N; Seidel T; Spelt K; Koes R; Quattrochio F; Sagasser M; Weisshaar B
    Plant J; 2015 Jun; 82(5):840-9. PubMed ID: 25891958
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aging indicators for stored carioca beans.
    Bento JAC; Lanna AC; Bassinello PZ; Oomah BD; Pimenta MEB; Carvalho RN; Moreira AS
    Food Res Int; 2020 Aug; 134():109249. PubMed ID: 32517899
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Seed coat color genetics and genotype × environment effects in yellow beans via machine-learning and genome-wide association.
    Sadohara R; Long Y; Izquierdo P; Urrea CA; Morris D; Cichy K
    Plant Genome; 2022 Mar; 15(1):e20173. PubMed ID: 34817119
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular cloning and functional characterization of DkMATE1 involved in proanthocyanidin precursor transport in persimmon (Diospyros kaki Thunb.) fruit.
    Yang S; Jiang Y; Xu L; Shiratake K; Luo Z; Zhang Q
    Plant Physiol Biochem; 2016 Nov; 108():241-250. PubMed ID: 27472890
    [TBL] [Abstract][Full Text] [Related]  

  • 20. VvMATE1 and VvMATE2 encode putative proanthocyanidin transporters expressed during berry development in Vitis vinifera L.
    Pérez-Díaz R; Ryngajllo M; Pérez-Díaz J; Peña-Cortés H; Casaretto JA; González-Villanueva E; Ruiz-Lara S
    Plant Cell Rep; 2014 Jul; 33(7):1147-59. PubMed ID: 24700246
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.