These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 36438871)

  • 1. Quantum mechanical modeling of interstellar molecules on cosmic dusts: H
    Li F; Quan D; Zhang X; Li X; Esimbek J
    Front Chem; 2022; 10():1040703. PubMed ID: 36438871
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrogen production and storage through adsorption and dissociation of H
    Aleem A; Perveen F
    J Mol Model; 2023 Sep; 29(10):305. PubMed ID: 37670084
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Testing the TPSS meta-generalized-gradient-approximation exchange-correlation functional in calculations of transition states and reaction barriers.
    Kanai Y; Wang X; Selloni A; Car R
    J Chem Phys; 2006 Dec; 125(23):234104. PubMed ID: 17190544
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Dynamic Nature of Graphene Active Sites in the H
    Liang Z; Li K; Guo F; Zhang H; Bu Y; Zhang J
    J Mol Model; 2023 Mar; 29(4):116. PubMed ID: 36973451
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Silicate-mediated interstellar water formation: A theoretical study.
    Molpeceres G; Rimola A; Ceccarelli C; Kästner J; Ugliengo P; Maté B
    Mon Not R Astron Soc; 2019 May; 482(2):5389-5400. PubMed ID: 31156274
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theoretical Study of Possible Reaction Mechanisms for the Formation of Carbodiimide in the Interstellar Medium (ISM) and Polarizabilities of Carbodiimide.
    Yadav M; Shivani ; Misra A; Tandon P
    Orig Life Evol Biosph; 2019 Jun; 49(1-2):89-103. PubMed ID: 31218479
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dimerization of dehydrogenated polycyclic aromatic hydrocarbons on graphene.
    Tang Z; Hammer B
    J Chem Phys; 2022 Apr; 156(13):134703. PubMed ID: 35395907
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Top-down formation of fullerenes in the interstellar medium.
    Berné O; Montillaud J; Joblin C
    Astron Astrophys; 2015 May; 577():. PubMed ID: 26722131
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theoretical Distribution of the Ammonia Binding Energy at Interstellar Icy Grains: A New Computational Framework.
    Tinacci L; Germain A; Pantaleone S; Ferrero S; Ceccarelli C; Ugliengo P
    ACS Earth Space Chem; 2022 Jun; 6(6):1514-1526. PubMed ID: 35747467
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adsorption of PAHs on interstellar ice viewed by classical molecular dynamics.
    Michoulier E; Noble JA; Simon A; Mascetti J; Toubin C
    Phys Chem Chem Phys; 2018 Mar; 20(13):8753-8764. PubMed ID: 29541718
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Infrared emission spectra of candidate interstellar aromatic molecules.
    Cook DJ; Schlemmer S; Balucani N; Wagner DR; Steiner B; Saykally RJ
    Nature; 1996 Mar; 380(6571):227-9. PubMed ID: 8637570
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolution of interstellar ices.
    Allamandola LJ; Bernstein MP; Sandford SA; Walker RL
    Space Sci Rev; 1999; 90(1-2):219-32. PubMed ID: 11543288
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiply-charged ions and interstellar chemistry.
    Böhme DK
    Phys Chem Chem Phys; 2011 Nov; 13(41):18253-63. PubMed ID: 21869973
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The interstellar C-H stretching band near 3.4 microns: constraints on the composition of organic material in the diffuse interstellar medium.
    Sandford SA; Allamandola LJ; Tielens AG; Sellgren K; Tapia M; Pendleton Y
    Astrophys J; 1991 Apr; 371():607-20. PubMed ID: 11538103
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aromatic hydrocarbons, diamonds, and fullerenes in interstellar space: puzzles to be solved by laboratory and theoretical astrochemistry.
    Sellgren K
    Spectrochim Acta A Mol Biomol Spectrosc; 2001 Mar; 57(4):627-42. PubMed ID: 11345243
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Van der Waals interactions between hydrocarbon molecules and zeolites: periodic calculations at different levels of theory, from density functional theory to the random phase approximation and Møller-Plesset perturbation theory.
    Göltl F; Grüneis A; Bučko T; Hafner J
    J Chem Phys; 2012 Sep; 137(11):114111. PubMed ID: 22998253
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High energy electron irradiation of interstellar carbonaceous dust analogs: Cosmic ray effects on the carriers of the 3.4 µm absorption band.
    Maté B; Molpeceres G; Jiménez-Redondo M; Tanarro I; Herrero VJ
    Astrophys J; 2016 Nov; 831(1):. PubMed ID: 28133388
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The cycling of carbon into and out of dust.
    Jones AP; Ysard N; Köhler M; Fanciullo L; Bocchio M; Micelotta E; Verstraete L; Guillet V
    Faraday Discuss; 2014; 168():313-26. PubMed ID: 25302387
    [TBL] [Abstract][Full Text] [Related]  

  • 19. IRON: A KEY ELEMENT FOR UNDERSTANDING THE ORIGIN AND EVOLUTION OF INTERSTELLAR DUST.
    Dwek E
    Astrophys J; 2016 Jul; 825(2):. PubMed ID: 32747835
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cosmic carbon chemistry: from the interstellar medium to the early Earth.
    Ehrenfreund P; Cami J
    Cold Spring Harb Perspect Biol; 2010 Dec; 2(12):a002097. PubMed ID: 20554702
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.