These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 36439196)

  • 1. The large numbers of minicolumns in the primary visual cortex of humans, chimpanzees and gorillas are related to high visual acuity.
    Wallace MN; Zobay O; Hardman E; Thompson Z; Dobbs P; Chakrabarti L; Palmer AR
    Front Neuroanat; 2022; 16():1034264. PubMed ID: 36439196
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Myelinated axons and the pyramidal cell modules in monkey primary visual cortex.
    Peters A; Sethares C
    J Comp Neurol; 1996 Feb; 365(2):232-55. PubMed ID: 8822167
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Somatodendritic minicolumns of output neurons in the rat visual cortex.
    Vercelli AE; Garbossa D; Curtetti R; Innocenti GM
    Eur J Neurosci; 2004 Jul; 20(2):495-502. PubMed ID: 15233758
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Morphometric variability of minicolumns in the striate cortex of Homo sapiens, Macaca mulatta, and Pan troglodytes.
    Casanova MF; Trippe J; Tillquist C; Switala AE
    J Anat; 2009 Feb; 214(2):226-34. PubMed ID: 19207984
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dendritic bundles, minicolumns, columns, and cortical output units.
    Innocenti GM; Vercelli A
    Front Neuroanat; 2010; 4():11. PubMed ID: 20305751
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recursive trace line method for detecting myelinated bundles: a comparison study with pyramidal cell arrays.
    Casanova MF; Konkachbaev AI; Switala AE; Elmaghraby AS
    J Neurosci Methods; 2008 Mar; 168(2):367-72. PubMed ID: 18192023
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Developmental changes in the spatial organization of neurons in the neocortex of humans and common chimpanzees.
    Teffer K; Buxhoeveden DP; Stimpson CD; Fobbs AJ; Schapiro SJ; Baze WB; McArthur MJ; Hopkins WD; Hof PR; Sherwood CC; Semendeferi K
    J Comp Neurol; 2013 Dec; 521(18):4249-59. PubMed ID: 23839595
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of dendritic bundles of pyramidal neurons in the rat visual cortex.
    Curtetti R; Garbossa D; Vercelli A
    Mech Ageing Dev; 2002 Mar; 123(5):473-9. PubMed ID: 11796132
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tissue compartments in laminae II-V of rabbit visual cortex--three-dimensional arrangement, size and developmental changes.
    Schmolke C
    Anat Embryol (Berl); 1996 Jan; 193(1):15-33. PubMed ID: 8838493
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A microcolumnar structure of monkey cerebral cortex revealed by immunocytochemical studies of double bouquet cell axons.
    DeFelipe J; Hendry SH; Hashikawa T; Molinari M; Jones EG
    Neuroscience; 1990; 37(3):655-73. PubMed ID: 1701039
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Minicolumnar abnormalities in autism.
    Casanova MF; van Kooten IA; Switala AE; van Engeland H; Heinsen H; Steinbusch HW; Hof PR; Trippe J; Stone J; Schmitz C
    Acta Neuropathol; 2006 Sep; 112(3):287-303. PubMed ID: 16819561
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Morphological organization of the neuropil in laminae II-V of rabbit visual cortex.
    Schmolke C
    Anat Embryol (Berl); 1987; 176(2):203-12. PubMed ID: 2441629
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Postnatal development of pyramidal dendritic and axonal bundles in the visual cortex of the rat.
    Lohmann H; Köppen HJ
    J Hirnforsch; 1995; 36(1):101-11. PubMed ID: 7751601
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dendritic morphology of pyramidal neurons in the chimpanzee neocortex: regional specializations and comparison to humans.
    Bianchi S; Stimpson CD; Bauernfeind AL; Schapiro SJ; Baze WB; McArthur MJ; Bronson E; Hopkins WD; Semendeferi K; Jacobs B; Hof PR; Sherwood CC
    Cereb Cortex; 2013 Oct; 23(10):2429-36. PubMed ID: 22875862
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The cortical microstructural basis of lateralized cognition: a review.
    Chance SA
    Front Psychol; 2014; 5():820. PubMed ID: 25126082
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wider minicolumns in autism: a neural basis for altered processing?
    McKavanagh R; Buckley E; Chance SA
    Brain; 2015 Jul; 138(Pt 7):2034-45. PubMed ID: 25935724
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aspects of the organization of neurons and dendritic bundles in primary somatosensory cortex of the rat.
    Skoglund TS; Pascher R; Berthold CH
    Neurosci Res; 2004 Oct; 50(2):189-98. PubMed ID: 15380326
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differences in cytoarchitecture of Broca's region between human, ape and macaque brains.
    Palomero-Gallagher N; Zilles K
    Cortex; 2019 Sep; 118():132-153. PubMed ID: 30333085
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Morphological differences between minicolumns in human and nonhuman primate cortex.
    Buxhoeveden DP; Switala AE; Roy E; Litaker M; Casanova MF
    Am J Phys Anthropol; 2001 Aug; 115(4):361-71. PubMed ID: 11471134
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibitory circuits accounting for development of visual cortical mappings, stimulus preferences, and psychophysical performance.
    Dobson VG
    Perception; 1981; 10(5):483-510. PubMed ID: 7339568
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.