These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 36439379)
1. A Roadmap to Fabricate Geometrically Accurate Three-Dimensional Scaffolds CO-Printed by Natural and Synthetic Polymers. Quigley C; Tuladhar S; Habib A J Micro Nanomanuf; 2022 Jun; 10(2):021001. PubMed ID: 36439379 [TBL] [Abstract][Full Text] [Related]
2. Shape fidelity, mechanical and biological performance of 3D printed polycaprolactone-bioactive glass composite scaffolds. Baier RV; Contreras Raggio JI; Giovanetti CM; Palza H; Burda I; Terrasi G; Weisse B; De Freitas GS; Nyström G; Vivanco JF; Aiyangar AK Biomater Adv; 2022 Mar; 134():112540. PubMed ID: 35525740 [TBL] [Abstract][Full Text] [Related]
3. Three-dimensional bioprinting of cell-laden constructs with polycaprolactone protective layers for using various thermoplastic polymers. Kim BS; Jang J; Chae S; Gao G; Kong JS; Ahn M; Cho DW Biofabrication; 2016 Aug; 8(3):035013. PubMed ID: 27550946 [TBL] [Abstract][Full Text] [Related]
4. Hydrogel-Based 3D Bioprinting for Bone and Cartilage Tissue Engineering. Abdollahiyan P; Oroojalian F; Mokhtarzadeh A; de la Guardia M Biotechnol J; 2020 Dec; 15(12):e2000095. PubMed ID: 32869529 [TBL] [Abstract][Full Text] [Related]
5. Chondroinductive Alginate-Based Hydrogels Having Graphene Oxide for 3D Printed Scaffold Fabrication. Olate-Moya F; Arens L; Wilhelm M; Mateos-Timoneda MA; Engel E; Palza H ACS Appl Mater Interfaces; 2020 Jan; 12(4):4343-4357. PubMed ID: 31909967 [TBL] [Abstract][Full Text] [Related]
7. Biomaterials in bone and mineralized tissue engineering using 3D printing and bioprinting technologies. Rahimnejad M; Rezvaninejad R; Rezvaninejad R; França R Biomed Phys Eng Express; 2021 Oct; 7(6):. PubMed ID: 34438382 [TBL] [Abstract][Full Text] [Related]
8. Advancing bioinks for 3D bioprinting using reactive fillers: A review. Heid S; Boccaccini AR Acta Biomater; 2020 Sep; 113():1-22. PubMed ID: 32622053 [TBL] [Abstract][Full Text] [Related]
9. Enhanced rheological behaviors of alginate hydrogels with carrageenan for extrusion-based bioprinting. Kim MH; Lee YW; Jung WK; Oh J; Nam SY J Mech Behav Biomed Mater; 2019 Oct; 98():187-194. PubMed ID: 31252328 [TBL] [Abstract][Full Text] [Related]
10. Extrusion 3D printing of keratin protein hydrogels free of exogenous chemical agents. Brodin E; Boehmer M; Prentice A; Neff E; McCoy K; Mueller J; Saul J; Sparks JL Biomed Mater; 2022 Jul; 17(5):. PubMed ID: 35793683 [TBL] [Abstract][Full Text] [Related]
11. Printability and bio-functionality of a shear thinning methacrylated xanthan-gelatin composite bioink. Garcia-Cruz MR; Postma A; Frith JE; Meagher L Biofabrication; 2021 Apr; 13(3):. PubMed ID: 33662950 [TBL] [Abstract][Full Text] [Related]
12. 3D bioprinting of a stem cell-laden, multi-material tubular composite: An approach for spinal cord repair. Hamid OA; Eltaher HM; Sottile V; Yang J Mater Sci Eng C Mater Biol Appl; 2021 Jan; 120():111707. PubMed ID: 33545866 [TBL] [Abstract][Full Text] [Related]
13. 3D Printed Chitosan Composite Scaffold for Chondrocytes Differentiation. Sahai N; Gogoi M; Tewari RP Curr Med Imaging; 2021; 17(7):832-842. PubMed ID: 33334294 [TBL] [Abstract][Full Text] [Related]
14. Hybrid biofabrication of 3D osteoconductive constructs comprising Mg-based nanocomposites and cell-laden bioinks for bone repair. Alcala-Orozco CR; Mutreja I; Cui X; Hooper GJ; Lim KS; Woodfield TBF Bone; 2022 Jan; 154():116198. PubMed ID: 34534709 [TBL] [Abstract][Full Text] [Related]
15. Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications. Xu T; Binder KW; Albanna MZ; Dice D; Zhao W; Yoo JJ; Atala A Biofabrication; 2013 Mar; 5(1):015001. PubMed ID: 23172542 [TBL] [Abstract][Full Text] [Related]
16. Crystallization enhanced thermal-sensitive hydrogels of PCL-PEG-PCL triblock copolymer for 3D printing. Cui Y; Jin R; Zhou Y; Yu M; Ling Y; Wang LQ Biomed Mater; 2021 Feb; 16(3):. PubMed ID: 33086194 [TBL] [Abstract][Full Text] [Related]
17. 3D Bio-Printability of Hybrid Pre-Crosslinked Hydrogels. Nelson C; Tuladhar S; Launen L; Habib A Int J Mol Sci; 2021 Dec; 22(24):. PubMed ID: 34948280 [TBL] [Abstract][Full Text] [Related]
18. Alginate based hydrogel inks for 3D bioprinting of engineered orthopedic tissues. Murab S; Gupta A; Włodarczyk-Biegun MK; Kumar A; van Rijn P; Whitlock P; Han SS; Agrawal G Carbohydr Polym; 2022 Nov; 296():119964. PubMed ID: 36088004 [TBL] [Abstract][Full Text] [Related]
19. Fabrication of a Highly Aligned Neural Scaffold via a Table Top Stereolithography 3D Printing and Electrospinning. Lee SJ; Nowicki M; Harris B; Zhang LG Tissue Eng Part A; 2017 Jun; 23(11-12):491-502. PubMed ID: 27998214 [TBL] [Abstract][Full Text] [Related]
20. 3D bioprinting of urethra with PCL/PLCL blend and dual autologous cells in fibrin hydrogel: An in vitro evaluation of biomimetic mechanical property and cell growth environment. Zhang K; Fu Q; Yoo J; Chen X; Chandra P; Mo X; Song L; Atala A; Zhao W Acta Biomater; 2017 Mar; 50():154-164. PubMed ID: 27940192 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]