BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 36439519)

  • 1. Microfluidic vascular models of tumor cell extravasation.
    Kim S; Wan Z; Jeon JS; Kamm RD
    Front Oncol; 2022; 12():1052192. PubMed ID: 36439519
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomimetic Microfluidic Platforms for the Assessment of Breast Cancer Metastasis.
    Sigdel I; Gupta N; Faizee F; Khare VM; Tiwari AK; Tang Y
    Front Bioeng Biotechnol; 2021; 9():633671. PubMed ID: 33777909
    [TBL] [Abstract][Full Text] [Related]  

  • 3. AKR1B10 (Aldo-keto reductase family 1 B10) promotes brain metastasis of lung cancer cells in a multi-organ microfluidic chip model.
    Liu W; Song J; Du X; Zhou Y; Li Y; Li R; Lyu L; He Y; Hao J; Ben J; Wang W; Shi H; Wang Q
    Acta Biomater; 2019 Jun; 91():195-208. PubMed ID: 31034948
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cancer-on-a-Chip: Models for Studying Metastasis.
    Zhang X; Karim M; Hasan MM; Hooper J; Wahab R; Roy S; Al-Hilal TA
    Cancers (Basel); 2022 Jan; 14(3):. PubMed ID: 35158914
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Advanced Microfluidic Models of Cancer and Immune Cell Extravasation: A Systematic Review of the Literature.
    Mondadori C; Crippa M; Moretti M; Candrian C; Lopa S; Arrigoni C
    Front Bioeng Biotechnol; 2020; 8():907. PubMed ID: 32984267
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The driving role of the Cdk5/Tln1/FAK
    Gilardi M; Bersini S; Valtorta S; Proietto M; Crippa M; Boussommier-Calleja A; Labelle M; Moresco RM; Vanoni M; Kamm RD; Moretti M
    Biomaterials; 2021 Sep; 276():120975. PubMed ID: 34333365
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of Tumor Cell Behaviors on a Vascular Microenvironment-Mimicking Microfluidic Chip.
    Huang R; Zheng W; Liu W; Zhang W; Long Y; Jiang X
    Sci Rep; 2015 Dec; 5():17768. PubMed ID: 26631692
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On-chip human microvasculature assay for visualization and quantification of tumor cell extravasation dynamics.
    Chen MB; Whisler JA; Fröse J; Yu C; Shin Y; Kamm RD
    Nat Protoc; 2017 May; 12(5):865-880. PubMed ID: 28358393
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PO-12 - The key role of talin-1 in cancer cell extravasation dissected through human vascularized 3D microfluidic model.
    Gilardi M; Bersini S; Calleja AB; Kamm RD; Vanoni M; Moretti M
    Thromb Res; 2016 Apr; 140 Suppl 1():S180-1. PubMed ID: 27161700
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Macrophages-Triggered Sequential Remodeling of Endothelium-Interstitial Matrix to Form Pre-Metastatic Niche in Microfluidic Tumor Microenvironment.
    Kim H; Chung H; Kim J; Choi DH; Shin Y; Kang YG; Kim BM; Seo SU; Chung S; Seok SH
    Adv Sci (Weinh); 2019 Jun; 6(11):1900195. PubMed ID: 31179226
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cancer Metastasis-on-a-Chip for Modeling Metastatic Cascade and Drug Screening.
    Brooks A; Zhang Y; Chen J; Zhao CX
    Adv Healthc Mater; 2024 Jan; ():e2302436. PubMed ID: 38224141
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of monocytes on tumor cell extravasation in a 3D vascularized microfluidic model.
    Boussommier-Calleja A; Atiyas Y; Haase K; Headley M; Lewis C; Kamm RD
    Biomaterials; 2019 Apr; 198():180-193. PubMed ID: 29548546
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A combined microfluidic-transcriptomic approach to characterize the extravasation potential of cancer cells.
    Bersini S; Miermont A; Pavesi A; Kamm RD; Thiery JP; Moretti M; Adriani G
    Oncotarget; 2018 Nov; 9(90):36110-36125. PubMed ID: 30546831
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent Advances in Microfluidic Platforms Applied in Cancer Metastasis: Circulating Tumor Cells' (CTCs) Isolation and Tumor-On-A-Chip.
    Lin Z; Luo G; Du W; Kong T; Liu C; Liu Z
    Small; 2020 Mar; 16(9):e1903899. PubMed ID: 31747120
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tissue-engineered microenvironment systems for modeling human vasculature.
    Tourovskaia A; Fauver M; Kramer G; Simonson S; Neumann T
    Exp Biol Med (Maywood); 2014 Sep; 239(9):1264-71. PubMed ID: 25030480
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Elucidating cancer-vascular paracrine signaling using a human organotypic breast cancer cell extravasation model.
    Humayun M; Ayuso JM; Brenneke RA; Virumbrales-Muñoz M; Lugo-Cintrón K; Kerr S; Ponik SM; Beebe DJ
    Biomaterials; 2021 Mar; 270():120640. PubMed ID: 33592387
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integration of intra- and extravasation in one cell-based microfluidic chip for the study of cancer metastasis.
    Shin MK; Kim SK; Jung H
    Lab Chip; 2011 Nov; 11(22):3880-7. PubMed ID: 21975823
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptable Microfluidic Vessel-on-a-Chip Platform for Investigating Tumor Metastatic Transport in Bloodstream.
    Wu Y; Zhou Y; Paul R; Qin X; Islam K; Liu Y
    Anal Chem; 2022 Sep; 94(35):12159-12166. PubMed ID: 35998619
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrophobic surface induced pro-metastatic cancer cells for
    Lee M; Kim S; Lee SY; Son JG; Park J; Park S; Yeun J; Lee TG; Im SG; Jeon JS
    Bioact Mater; 2024 Apr; 34():401-413. PubMed ID: 38282966
    [No Abstract]   [Full Text] [Related]  

  • 20. The effects of luminal and trans-endothelial fluid flows on the extravasation and tissue invasion of tumor cells in a 3D in vitro microvascular platform.
    Hajal C; Ibrahim L; Serrano JC; Offeddu GS; Kamm RD
    Biomaterials; 2021 Jan; 265():120470. PubMed ID: 33190735
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.