These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 36439988)

  • 1. Direct conversion of carbon dioxide and steam into hydrocarbons and oxygenates using solid acid electrolysis cells.
    Fujiwara N; Tada S; Kikuchi R
    iScience; 2022 Nov; 25(11):105381. PubMed ID: 36439988
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrogen Production by Steam Electrolysis in Solid Acid Electrolysis Cells.
    Fujiwara N; Nagase H; Tada S; Kikuchi R
    ChemSusChem; 2021 Jan; 14(1):417-427. PubMed ID: 33150728
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct electrochemical synthesis of oxygenates from ethane using phosphate-based electrolysis cells.
    Honda Y; Fujiwara N; Tada S; Kobayashi Y; Oyama ST; Kikuchi R
    Chem Commun (Camb); 2020 Sep; 56(76):11199-11202. PubMed ID: 32902545
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrochemical Splitting of Methane in Molten Salts To Produce Hydrogen.
    Fan Z; Xiao W
    Angew Chem Int Ed Engl; 2021 Mar; 60(14):7664-7668. PubMed ID: 33427374
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shaping Copper Nanocatalysts to Steer Selectivity in the Electrochemical CO
    Rossi K; Buonsanti R
    Acc Chem Res; 2022 Mar; 55(5):629-637. PubMed ID: 35138797
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Study of Pyridine-Mediated Electrochemical Reduction of CO2 to Methanol at High CO2 Pressure.
    Rybchenko SI; Touhami D; Wadhawan JD; Haywood SK
    ChemSusChem; 2016 Jul; 9(13):1660-9. PubMed ID: 27253886
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Experimental research on the process of decomposition of a CO2-CO-H2O-H2-N2 gas mixture in an electrolytic cell with a solid electrolyte].
    Grishaenkov BG; Zorina NG
    Kosm Biol Aviakosm Med; 1986; 20(5):78-81. PubMed ID: 3097386
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct electrolytic dissolution of silicate minerals for air CO2 mitigation and carbon-negative H2 production.
    Rau GH; Carroll SA; Bourcier WL; Singleton MJ; Smith MM; Aines RD
    Proc Natl Acad Sci U S A; 2013 Jun; 110(25):10095-100. PubMed ID: 23729814
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Electrochemically active microorganisms and electrolytically assisted fermentative hydrogen production--a review].
    Li J; Zhang W; Yin F; Xu R; Chen Y
    Wei Sheng Wu Xue Bao; 2009 Jun; 49(6):697-702. PubMed ID: 19673403
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CO
    Ma Z; Yang Z; Lai W; Wang Q; Qiao Y; Tao H; Lian C; Liu M; Ma C; Pan A; Huang H
    Nat Commun; 2022 Dec; 13(1):7596. PubMed ID: 36494381
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using Light and Electrons to Bend Carbon Dioxide: Developing and Understanding Catalysts for CO
    Cohen KY; Evans R; Dulovic S; Bocarsly AB
    Acc Chem Res; 2022 Apr; 55(7):944-954. PubMed ID: 35290017
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Achieving Highly Efficient Carbon Dioxide Electrolysis by
    Yang X; Sun W; Ma M; Xu C; Ren R; Qiao J; Wang Z; Li Z; Zhen S; Sun K
    ACS Appl Mater Interfaces; 2021 May; 13(17):20060-20069. PubMed ID: 33886263
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering Catalyst-Electrolyte Microenvironments to Optimize the Activity and Selectivity for the Electrochemical Reduction of CO
    Bui JC; Kim C; King AJ; Romiluyi O; Kusoglu A; Weber AZ; Bell AT
    Acc Chem Res; 2022 Feb; 55(4):484-494. PubMed ID: 35104114
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct Conversion of Greenhouse Gas CO2 into Graphene via Molten Salts Electrolysis.
    Hu L; Song Y; Jiao S; Liu Y; Ge J; Jiao H; Zhu J; Wang J; Zhu H; Fray DJ
    ChemSusChem; 2016 Mar; 9(6):588-94. PubMed ID: 26871684
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advances and Challenges for the Electrochemical Reduction of CO
    Jin S; Hao Z; Zhang K; Yan Z; Chen J
    Angew Chem Int Ed Engl; 2021 Sep; 60(38):20627-20648. PubMed ID: 33861487
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure-Sensitive CO
    Li Y; Cui F; Ross MB; Kim D; Sun Y; Yang P
    Nano Lett; 2017 Feb; 17(2):1312-1317. PubMed ID: 28094953
    [TBL] [Abstract][Full Text] [Related]  

  • 17. One-Step Reforming of CO
    Wang L; Yi Y; Wu C; Guo H; Tu X
    Angew Chem Int Ed Engl; 2017 Oct; 56(44):13679-13683. PubMed ID: 28842938
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Understanding the Role of Inter- and Intramolecular Promoters in Electro- and Photochemical CO
    Fujita E; Grills DC; Manbeck GF; Polyansky DE
    Acc Chem Res; 2022 Mar; 55(5):616-628. PubMed ID: 35133133
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Syngas production by high temperature steam/CO2 coelectrolysis using solid oxide electrolysis cells.
    Chen X; Guan C; Xiao G; Du X; Wang JQ
    Faraday Discuss; 2015; 182():341-51. PubMed ID: 26204849
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advancing integrated CO
    Li M; Yang K; Abdinejad M; Zhao C; Burdyny T
    Nanoscale; 2022 Aug; 14(33):11892-11908. PubMed ID: 35938674
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.