These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 36440374)

  • 61. Text mining online disinformation about antihypertensive agents ACEI/ARB and COVID-19 on Sina Weibo.
    Wang C; Fang B; Regmi A; Yamaguchi Y; Yang L; Cai Y
    J Glob Health; 2023 Aug; 13():06028. PubMed ID: 37593954
    [TBL] [Abstract][Full Text] [Related]  

  • 62. A framework to extract biomedical knowledge from gluten-related tweets: The case of dietary concerns in digital era.
    Pérez-Pérez M; Igrejas G; Fdez-Riverola F; Lourenço A
    Artif Intell Med; 2021 Aug; 118():102131. PubMed ID: 34412847
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Examining the Public Messaging on 'Loneliness' over Social Media: An Unsupervised Machine Learning Analysis of Twitter Posts over the Past Decade.
    Ng QX; Lee DYX; Yau CE; Lim YL; Ng CX; Liew TM
    Healthcare (Basel); 2023 May; 11(10):. PubMed ID: 37239773
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Associations Between Exposure to and Expression of Negative Opinions About Human Papillomavirus Vaccines on Social Media: An Observational Study.
    Dunn AG; Leask J; Zhou X; Mandl KD; Coiera E
    J Med Internet Res; 2015 Jun; 17(6):e144. PubMed ID: 26063290
    [TBL] [Abstract][Full Text] [Related]  

  • 65. The Plebeian Algorithm: A Democratic Approach to Censorship and Moderation.
    Fedoruk B; Nelson H; Frost R; Fucile Ladouceur K
    JMIR Form Res; 2021 Dec; 5(12):e32427. PubMed ID: 34854812
    [TBL] [Abstract][Full Text] [Related]  

  • 66. COVID-19 Messaging on Social Media for American Indian and Alaska Native Communities: Thematic Analysis of Audience Reach and Web Behavior.
    Weeks R; White S; Hartner AM; Littlepage S; Wolf J; Masten K; Tingey L
    JMIR Infodemiology; 2022; 2(2):e38441. PubMed ID: 36471705
    [TBL] [Abstract][Full Text] [Related]  

  • 67. A 4D Theoretical Framework for Measuring Topic-Specific Influence on Twitter: Development and Usability Study on Dietary Sodium Tweets.
    Mao L; Chu E; Gu J; Hu T; Weiner BJ; Su Y
    J Med Internet Res; 2023 Jun; 25():e45897. PubMed ID: 37310774
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Twitter Usage Among Physicians From 2016 to 2020: Algorithm Development and Longitudinal Analysis Study.
    Nakagawa K; Yang NT; Wilson M; Yellowlees P
    J Med Internet Res; 2022 Sep; 24(9):e37752. PubMed ID: 36066939
    [TBL] [Abstract][Full Text] [Related]  

  • 69. An Analysis of French-Language Tweets About COVID-19 Vaccines: Supervised Learning Approach.
    Sauvayre R; Vernier J; Chauvière C
    JMIR Med Inform; 2022 May; 10(5):e37831. PubMed ID: 35512274
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Disinformed social movements: A large-scale mapping of conspiracy narratives as online harms during the COVID-19 pandemic.
    Darius P; Urquhart M
    Online Soc Netw Media; 2021 Nov; 26():100174. PubMed ID: 34642647
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Extracting health-related causality from twitter messages using natural language processing.
    Doan S; Yang EW; Tilak SS; Li PW; Zisook DS; Torii M
    BMC Med Inform Decis Mak; 2019 Apr; 19(Suppl 3):79. PubMed ID: 30943954
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Deep Learning With Anaphora Resolution for the Detection of Tweeters With Depression: Algorithm Development and Validation Study.
    Wongkoblap A; Vadillo MA; Curcin V
    JMIR Ment Health; 2021 Aug; 8(8):e19824. PubMed ID: 34383688
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Exploring Discussions About Virtual Reality on Twitter to Inform Brain Injury Rehabilitation: Content and Network Analysis.
    Brassel S; Brunner M; Campbell A; Power E; Togher L
    J Med Internet Res; 2024 Jan; 26():e45168. PubMed ID: 38241072
    [TBL] [Abstract][Full Text] [Related]  

  • 74. An aspect-level sentiment analysis dataset for therapies on Twitter.
    Guo Y; Das S; Lakamana S; Sarker A
    Data Brief; 2023 Oct; 50():109618. PubMed ID: 37808542
    [TBL] [Abstract][Full Text] [Related]  

  • 75. COVID-19 Vaccine Discourse on Twitter: A Content Analysis of Persuasion Techniques, Sentiment and Mis/Disinformation.
    Scannell D; Desens L; Guadagno M; Tra Y; Acker E; Sheridan K; Rosner M; Mathieu J; Fulk M
    J Health Commun; 2021 Jul; 26(7):443-459. PubMed ID: 34346288
    [TBL] [Abstract][Full Text] [Related]  

  • 76. #JunkScience: Investigating pseudoscience disinformation in the Russian Internet Research Agency tweets.
    Strudwicke IJ; Grant WJ
    Public Underst Sci; 2020 Jul; 29(5):459-472. PubMed ID: 32597365
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Identifying Insomnia From Social Media Posts: Psycholinguistic Analyses of User Tweets.
    Sakib AS; Mukta MSH; Huda FR; Islam AKMN; Islam T; Ali ME
    J Med Internet Res; 2021 Dec; 23(12):e27613. PubMed ID: 34889758
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Discovering Cohorts of Pregnant Women From Social Media for Safety Surveillance and Analysis.
    Sarker A; Chandrashekar P; Magge A; Cai H; Klein A; Gonzalez G
    J Med Internet Res; 2017 Oct; 19(10):e361. PubMed ID: 29084707
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Identifying Influential Factors in the Discussion Dynamics of Emerging Health Issues on Social Media: Computational Study.
    Safarnejad L; Xu Q; Ge Y; Bagavathi A; Krishnan S; Chen S
    JMIR Public Health Surveill; 2020 Jul; 6(3):e17175. PubMed ID: 32348275
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Mapping tweets to a known disease epidemiology; a case study of Lyme disease in the United Kingdom and Republic of Ireland.
    Tulloch JSP; Vivancos R; Christley RM; Radford AD; Warner JC
    J Biomed Inform; 2019; 100S():100060. PubMed ID: 34384577
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.