These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 36440497)
41. PhasiRNAs in Plants: Their Biogenesis, Genic Sources, and Roles in Stress Responses, Development, and Reproduction. Liu Y; Teng C; Xia R; Meyers BC Plant Cell; 2020 Oct; 32(10):3059-3080. PubMed ID: 32817252 [TBL] [Abstract][Full Text] [Related]
42. Genome-wide identification of phasiRNAs in Arabidopsis thaliana, and insights into biogenesis, temperature sensitivity, and organ specificity. Feng Z; Ma X; Wu X; Wu W; Shen B; Li S; Tang Y; Wang J; Shao C; Meng Y Plant Cell Environ; 2024 Oct; 47(10):3797-3812. PubMed ID: 38798197 [TBL] [Abstract][Full Text] [Related]
43. High throughput sequencing of small RNA component of leaves and inflorescence revealed conserved and novel miRNAs as well as phasiRNA loci in chickpea. Srivastava S; Zheng Y; Kudapa H; Jagadeeswaran G; Hivrale V; Varshney RK; Sunkar R Plant Sci; 2015 Jun; 235():46-57. PubMed ID: 25900565 [TBL] [Abstract][Full Text] [Related]
44. Identification and characterization of miRNAs and PHAS loci related to the early development of the embryo and endosperm in Fragaria × ananassa. Jing X; Zhang H; Huai X; An Q; Qiao Y BMC Genomics; 2022 Sep; 23(1):638. PubMed ID: 36076187 [TBL] [Abstract][Full Text] [Related]
45. Genome-wide identification of AGO18b-bound miRNAs and phasiRNAs in maize by cRIP-seq. Sun W; Chen D; Xue Y; Zhai L; Zhang D; Cao Z; Liu L; Cheng C; Zhang Y; Zhang Z BMC Genomics; 2019 Aug; 20(1):656. PubMed ID: 31419938 [TBL] [Abstract][Full Text] [Related]
46. Reproductive phasiRNAs regulate reprogramming of gene expression and meiotic progression in rice. Zhang YC; Lei MQ; Zhou YF; Yang YW; Lian JP; Yu Y; Feng YZ; Zhou KR; He RR; He H; Zhang Z; Yang JH; Chen YQ Nat Commun; 2020 Nov; 11(1):6031. PubMed ID: 33247135 [TBL] [Abstract][Full Text] [Related]
47. Secondary siRNAs from Medicago NB-LRRs modulated via miRNA-target interactions and their abundances. Fei Q; Li P; Teng C; Meyers BC Plant J; 2015 Aug; 83(3):451-65. PubMed ID: 26042408 [TBL] [Abstract][Full Text] [Related]
48. Reproductive phasiRNAs in grasses are compositionally distinct from other classes of small RNAs. Patel P; Mathioni S; Kakrana A; Shatkay H; Meyers BC New Phytol; 2018 Nov; 220(3):851-864. PubMed ID: 30020552 [TBL] [Abstract][Full Text] [Related]
49. Pre-meiotic 21-nucleotide reproductive phasiRNAs emerged in seed plants and diversified in flowering plants. Pokhrel S; Huang K; Bélanger S; Zhan J; Caplan JL; Kramer EM; Meyers BC Nat Commun; 2021 Aug; 12(1):4941. PubMed ID: 34400639 [TBL] [Abstract][Full Text] [Related]
51. MicroRNA482/2118 is lineage-specifically involved in gibberellin signalling via the regulation of GID1 expression by targeting noncoding PHAS genes and subsequently instigated phasiRNAs. Zhang Y; Zeng Z; Hu H; Zhao M; Chen C; Ma X; Li G; Li J; Liu Y; Hao Y; Xu J; Xia R Plant Biotechnol J; 2024 Apr; 22(4):819-832. PubMed ID: 37966709 [TBL] [Abstract][Full Text] [Related]
52. Genome-wide identification and characterization of phased small interfering RNA genes in response to Botrytis cinerea infection in Solanum lycopersicum. Wu F; Chen Y; Tian X; Zhu X; Jin W Sci Rep; 2017 Jun; 7(1):3019. PubMed ID: 28596514 [TBL] [Abstract][Full Text] [Related]
54. Spatial distribution of three ARGONAUTEs regulates the anther phasiRNA pathway. Tamotsu H; Koizumi K; Briones AV; Komiya R Nat Commun; 2023 Jun; 14(1):3333. PubMed ID: 37286636 [TBL] [Abstract][Full Text] [Related]
55. Gene coexpression network alignment and conservation of gene modules between two grass species: maize and rice. Ficklin SP; Feltus FA Plant Physiol; 2011 Jul; 156(3):1244-56. PubMed ID: 21606319 [TBL] [Abstract][Full Text] [Related]
56. Genome-wide analysis of leafbladeless1-regulated and phased small RNAs underscores the importance of the TAS3 ta-siRNA pathway to maize development. Dotto MC; Petsch KA; Aukerman MJ; Beatty M; Hammell M; Timmermans MC PLoS Genet; 2014 Dec; 10(12):e1004826. PubMed ID: 25503246 [TBL] [Abstract][Full Text] [Related]
57. Reproductive phasiRNA loci and DICER-LIKE5, but not microRNA loci, diversified in monocotyledonous plants. Patel P; Mathioni SM; Hammond R; Harkess AE; Kakrana A; Arikit S; Dusia A; Meyers BC Plant Physiol; 2021 Apr; 185(4):1764-1782. PubMed ID: 33793935 [TBL] [Abstract][Full Text] [Related]
58. Mechanism for the genomic and functional evolution of the MIR2118 family in the grass lineage. Lan T; Yang X; Chen J; Tian P; Shi L; Yu Y; Liu L; Gao L; Mo B; Chen X; Tang G New Phytol; 2022 Feb; 233(4):1915-1930. PubMed ID: 34878652 [TBL] [Abstract][Full Text] [Related]
59. miR2118-dependent U-rich phasiRNA production in rice anther wall development. Araki S; Le NT; Koizumi K; Villar-Briones A; Nonomura KI; Endo M; Inoue H; Saze H; Komiya R Nat Commun; 2020 Jun; 11(1):3115. PubMed ID: 32561756 [TBL] [Abstract][Full Text] [Related]
60. Heat-responsive microRNAs and phased small interfering RNAs in reproductive development of flax. Pokhrel S; Meyers BC Plant Direct; 2022 Feb; 6(2):e385. PubMed ID: 35224420 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]