These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 36440710)
1. Single-Cell RNA Sequencing of Arabidopsis Leaf Tissues Identifies Multiple Specialized Cell Types: Idioblast Myrosin Cells and Potential Glucosinolate-Producing Cells. Maeda T; Sugano SS; Shirakawa M; Sagara M; Ito T; Kondo S; Nagano AJ Plant Cell Physiol; 2023 Mar; 64(2):234-247. PubMed ID: 36440710 [TBL] [Abstract][Full Text] [Related]
2. Specialized Vacuoles of Myrosin Cells: Chemical Defense Strategy in Brassicales Plants. Shirakawa M; Hara-Nishimura I Plant Cell Physiol; 2018 Jul; 59(7):1309-1316. PubMed ID: 29897512 [TBL] [Abstract][Full Text] [Related]
3. Different myrosinase and idioblast distribution in Arabidopsis and Brassica napus. Andréasson E; Bolt Jørgensen L; Höglund AS; Rask L; Meijer J Plant Physiol; 2001 Dec; 127(4):1750-63. PubMed ID: 11743118 [TBL] [Abstract][Full Text] [Related]
4. Cell specific, cross-species expression of myrosinases in Brassica napus, Arabidopsis thaliana and Nicotiana tabacum. Thangstad OP; Gilde B; Chadchawan S; Seem M; Husebye H; Bradley D; Bones AM Plant Mol Biol; 2004 Mar; 54(4):597-611. PubMed ID: 15316292 [TBL] [Abstract][Full Text] [Related]
5. FAMA is an essential component for the differentiation of two distinct cell types, myrosin cells and guard cells, in Arabidopsis. Shirakawa M; Ueda H; Nagano AJ; Shimada T; Kohchi T; Hara-Nishimura I Plant Cell; 2014 Oct; 26(10):4039-52. PubMed ID: 25304202 [TBL] [Abstract][Full Text] [Related]
6. Myrosin idioblast cell fate and development are regulated by the Arabidopsis transcription factor FAMA, the auxin pathway, and vesicular trafficking. Li M; Sack FD Plant Cell; 2014 Oct; 26(10):4053-66. PubMed ID: 25304201 [TBL] [Abstract][Full Text] [Related]
7. The Cell Differentiation of Idioblast Myrosin Cells: Similarities With Vascular and Guard Cells. Shirakawa M; Tanida M; Ito T Front Plant Sci; 2021; 12():829541. PubMed ID: 35082820 [TBL] [Abstract][Full Text] [Related]
8. Oilseed rape seeds with ablated defence cells of the glucosinolate-myrosinase system. Production and characteristics of double haploid MINELESS plants of Brassica napus L. Ahuja I; Borgen BH; Hansen M; Honne BI; Müller C; Rohloff J; Rossiter JT; Bones AM J Exp Bot; 2011 Oct; 62(14):4975-93. PubMed ID: 21778185 [TBL] [Abstract][Full Text] [Related]
9. Removing the mustard oil bomb from seeds: transgenic ablation of myrosin cells in oilseed rape (Brassica napus) produces MINELESS seeds. Borgen BH; Thangstad OP; Ahuja I; Rossiter JT; Bones AM J Exp Bot; 2010 Jun; 61(6):1683-97. PubMed ID: 20219777 [TBL] [Abstract][Full Text] [Related]
10. AtVAM3 is required for normal specification of idioblasts, myrosin cells. Ueda H; Nishiyama C; Shimada T; Koumoto Y; Hayashi Y; Kondo M; Takahashi T; Ohtomo I; Nishimura M; Hara-Nishimura I Plant Cell Physiol; 2006 Jan; 47(1):164-75. PubMed ID: 16306062 [TBL] [Abstract][Full Text] [Related]
11. Guard cell- and phloem idioblast-specific expression of thioglucoside glucohydrolase 1 (myrosinase) in Arabidopsis. Husebye H; Chadchawan S; Winge P; Thangstad OP; Bones AM Plant Physiol; 2002 Apr; 128(4):1180-8. PubMed ID: 11950967 [TBL] [Abstract][Full Text] [Related]
12. The Cellular and Subcellular Organization of the Glucosinolate-Myrosinase System against Herbivores and Pathogens. Lv Q; Li X; Fan B; Zhu C; Chen Z Int J Mol Sci; 2022 Jan; 23(3):. PubMed ID: 35163500 [TBL] [Abstract][Full Text] [Related]
13. Comparative investigations of the glucosinolate-myrosinase system in Arabidopsis suspension cells and hypocotyls. Alvarez S; He Y; Chen S Plant Cell Physiol; 2008 Mar; 49(3):324-33. PubMed ID: 18202003 [TBL] [Abstract][Full Text] [Related]
14. Arabidopsis myrosinases TGG1 and TGG2 have redundant function in glucosinolate breakdown and insect defense. Barth C; Jander G Plant J; 2006 May; 46(4):549-62. PubMed ID: 16640593 [TBL] [Abstract][Full Text] [Related]
15. Nitrile-specifier proteins involved in glucosinolate hydrolysis in Arabidopsis thaliana. Kissen R; Bones AM J Biol Chem; 2009 May; 284(18):12057-70. PubMed ID: 19224919 [TBL] [Abstract][Full Text] [Related]
16. Insect herbivore counteradaptations to the plant glucosinolate-myrosinase system. Winde I; Wittstock U Phytochemistry; 2011 Sep; 72(13):1566-75. PubMed ID: 21316065 [TBL] [Abstract][Full Text] [Related]
17. Genotype, age, tissue, and environment regulate the structural outcome of glucosinolate activation. Wentzell AM; Kliebenstein DJ Plant Physiol; 2008 May; 147(1):415-28. PubMed ID: 18359845 [TBL] [Abstract][Full Text] [Related]
18. Glucosinolate Catabolism Maintains Glucosinolate Profiles and Transport in Sulfur-Starved Arabidopsis. Zhang L; Kawaguchi R; Enomoto T; Nishida S; Burow M; Maruyama-Nakashita A Plant Cell Physiol; 2023 Dec; 64(12):1534-1550. PubMed ID: 37464897 [TBL] [Abstract][Full Text] [Related]
19. Phyllotreta striolata flea beetles use host plant defense compounds to create their own glucosinolate-myrosinase system. Beran F; Pauchet Y; Kunert G; Reichelt M; Wielsch N; Vogel H; Reinecke A; Svatoš A; Mewis I; Schmid D; Ramasamy S; Ulrichs C; Hansson BS; Gershenzon J; Heckel DG Proc Natl Acad Sci U S A; 2014 May; 111(20):7349-54. PubMed ID: 24799680 [TBL] [Abstract][Full Text] [Related]