These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 36440888)

  • 1. Nanocomposite Catalyst for High-Performance and Durable Intermediate-Temperature Methane-Fueled Metal-Supported Solid Oxide Fuel Cells.
    Liu F; Diercks D; Hussain AM; Dale N; Furuya Y; Miura Y; Fukuyama Y; Duan C
    ACS Appl Mater Interfaces; 2022 Dec; 14(48):53840-53849. PubMed ID: 36440888
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Direct
    Wang D; Wong SI; Sunarso J; Xu M; Wang W; Ran R; Zhou W; Shao Z
    ACS Appl Mater Interfaces; 2021 May; 13(17):20105-20113. PubMed ID: 33886260
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proton-Conducting La-Doped Ceria-Based Internal Reforming Layer for Direct Methane Solid Oxide Fuel Cells.
    Zhao J; Xu X; Zhou W; Blakey I; Liu S; Zhu Z
    ACS Appl Mater Interfaces; 2017 Oct; 9(39):33758-33765. PubMed ID: 28892349
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced Anode Performance and Coking Resistance by In Situ Exsolved Multiple-Twinned Co-Fe Nanoparticles for Solid Oxide Fuel Cells.
    Zhang W; Wang H; Guan K; Meng J; Wei Z; Liu X; Meng J
    ACS Appl Mater Interfaces; 2020 Jan; 12(1):461-473. PubMed ID: 31841308
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comprehensive investigation of direct ammonia-fueled thin-film solid-oxide fuel cells: Performance, limitation, and prospects.
    Oh S; Oh MJ; Hong J; Yoon KJ; Ji HI; Lee JH; Kang H; Son JW; Yang S
    iScience; 2022 Sep; 25(9):105009. PubMed ID: 36105594
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Robust Direct Hydrocarbon Solid Oxide Fuel Cells with Exsolved Anode Nanocatalysts.
    Wang T; Wang R; Xie X; Chang S; Wei T; Dong D; Wang Z
    ACS Appl Mater Interfaces; 2022 Dec; 14(51):56735-56742. PubMed ID: 36515640
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A high-performance Ni-CeO
    Sasaki K; Takahashi I; Kuramoto K; Shin-Mura K
    R Soc Open Sci; 2022 Jul; 9(7):220227. PubMed ID: 35875470
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Infiltrated Ni
    Shi N; Xie Y; Yang Y; Huan D; Pan Y; Peng R; Xia C; Chen C; Zhan Z; Lu Y
    ACS Appl Mater Interfaces; 2021 Feb; 13(4):4943-4954. PubMed ID: 33492121
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced methane steam reforming activity and electrochemical performance of Ni
    Li K; Jia L; Wang X; Pu J; Chi B; Li J
    Sci Rep; 2016 Oct; 6():35981. PubMed ID: 27775092
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A redox-stable efficient anode for solid-oxide fuel cells.
    Tao S; Irvine JT
    Nat Mater; 2003 May; 2(5):320-3. PubMed ID: 12692533
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of a Methane Oxidation Intermediate on Solid Oxide Fuel Cell Anode Surfaces with Fourier Transform Infrared Emission.
    Pomfret MB; Steinhurst DA; Owrutsky JC
    J Phys Chem Lett; 2013 Apr; 4(8):1310-4. PubMed ID: 26282145
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-Performance, Thermal Cycling Stable, Coking-Tolerant Solid Oxide Fuel Cells with Nanostructured Electrodes.
    Zhang W; Zhou Y; Hussain AM; Song D; Miura Y; Chen Y; Luo Z; Kane N; Niu Y; Dale N; Fukuyama Y; Liu M
    ACS Appl Mater Interfaces; 2021 Feb; 13(4):4993-4999. PubMed ID: 33492941
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrochemical and catalytic properties of Ni/BaCe0.75Y0.25O3-δ anode for direct ammonia-fueled solid oxide fuel cells.
    Yang J; Molouk AF; Okanishi T; Muroyama H; Matsui T; Eguchi K
    ACS Appl Mater Interfaces; 2015 Apr; 7(13):7406-12. PubMed ID: 25804559
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Infiltrated NiCo Alloy Nanoparticle Decorated Perovskite Oxide: A Highly Active, Stable, and Antisintering Anode for Direct-Ammonia Solid Oxide Fuel Cells.
    Song Y; Li H; Xu M; Yang G; Wang W; Ran R; Zhou W; Shao Z
    Small; 2020 Jul; 16(28):e2001859. PubMed ID: 32510184
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mixed fuel strategy for carbon deposition mitigation in solid oxide fuel cells at intermediate temperatures.
    Su C; Chen Y; Wang W; Ran R; Shao Z; Diniz da Costa JC; Liu S
    Environ Sci Technol; 2014 Jun; 48(12):7122-7. PubMed ID: 24856957
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrathin Atomic Layer-Deposited CeO
    Shin JW; Oh S; Lee S; Yu JG; Park J; Go D; Yang BC; Kim HJ; An J
    ACS Appl Mater Interfaces; 2019 Dec; 11(50):46651-46657. PubMed ID: 31697463
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimization of ScSZ/GDC bilayer thin film electrolyte for anodic aluminum oxide supported low temperature solid oxide fuel cells.
    Cho GY; Kim Y; Hong SW; Yu W; Kim YB; Cha SW
    Nanotechnology; 2018 Aug; 29(34):345401. PubMed ID: 29708505
    [TBL] [Abstract][Full Text] [Related]  

  • 18. All-Sputtered, Superior Power Density Thin-Film Solid Oxide Fuel Cells with a Novel Nanofibrous Ceramic Cathode.
    Lee YH; Ren H; Wu EA; Fullerton EE; Meng YS; Minh NQ
    Nano Lett; 2020 May; 20(5):2943-2949. PubMed ID: 32176514
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Methane oxidation at redox stable fuel cell electrode La0.75Sr0.25Cr0.5Mn0.5O(3-delta).
    Tao S; Irvine JT; Plint SM
    J Phys Chem B; 2006 Nov; 110(43):21771-6. PubMed ID: 17064138
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A high-performance cathode for the next generation of solid-oxide fuel cells.
    Shao Z; Haile SM
    Nature; 2004 Sep; 431(7005):170-3. PubMed ID: 15356627
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.