These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 36440949)

  • 21. Predicting protein residue-residue contacts using random forests and deep networks.
    Luttrell J; Liu T; Zhang C; Wang Z
    BMC Bioinformatics; 2019 Mar; 20(Suppl 2):100. PubMed ID: 30871477
    [TBL] [Abstract][Full Text] [Related]  

  • 22. TUnA: an uncertainty-aware transformer model for sequence-based protein-protein interaction prediction.
    Ko YS; Parkinson J; Liu C; Wang W
    Brief Bioinform; 2024 Jul; 25(5):. PubMed ID: 39051117
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Protein-Protein Interaction Interface Residue Pair Prediction Based on Deep Learning Architecture.
    Zhao Z; Gong X
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(5):1753-1759. PubMed ID: 28541224
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Integrating deep learning, threading alignments, and a multi-MSA strategy for high-quality protein monomer and complex structure prediction in CASP15.
    Zheng W; Wuyun Q; Freddolino PL; Zhang Y
    Proteins; 2023 Dec; 91(12):1684-1703. PubMed ID: 37650367
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A deep learning framework for improving long-range residue-residue contact prediction using a hierarchical strategy.
    Xiong D; Zeng J; Gong H
    Bioinformatics; 2017 Sep; 33(17):2675-2683. PubMed ID: 28472263
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Protein tertiary structure modeling driven by deep learning and contact distance prediction in CASP13.
    Hou J; Wu T; Cao R; Cheng J
    Proteins; 2019 Dec; 87(12):1165-1178. PubMed ID: 30985027
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identification of residue pairing in interacting β-strands from a predicted residue contact map.
    Mao W; Wang T; Zhang W; Gong H
    BMC Bioinformatics; 2018 Apr; 19(1):146. PubMed ID: 29673311
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Integrating unsupervised language model with multi-view multiple sequence alignments for high-accuracy inter-chain contact prediction.
    Liu Z; Zhu YH; Shen LC; Xiao X; Qiu WR; Yu DJ
    Comput Biol Med; 2023 Nov; 166():107529. PubMed ID: 37748220
    [TBL] [Abstract][Full Text] [Related]  

  • 29. ComplexContact: a web server for inter-protein contact prediction using deep learning.
    Zeng H; Wang S; Zhou T; Zhao F; Li X; Wu Q; Xu J
    Nucleic Acids Res; 2018 Jul; 46(W1):W432-W437. PubMed ID: 29790960
    [TBL] [Abstract][Full Text] [Related]  

  • 30. BetaDL: A protein beta-sheet predictor utilizing a deep learning model and independent set solution.
    Dehghani T; Naghibzadeh M; Eghdami M
    Comput Biol Med; 2019 Jan; 104():241-249. PubMed ID: 30530227
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Deep graph learning of inter-protein contacts.
    Xie Z; Xu J
    Bioinformatics; 2022 Jan; 38(4):947-953. PubMed ID: 34755837
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A-Prot: protein structure modeling using MSA transformer.
    Hong Y; Lee J; Ko J
    BMC Bioinformatics; 2022 Mar; 23(1):93. PubMed ID: 35296230
    [TBL] [Abstract][Full Text] [Related]  

  • 33. DNCON2: improved protein contact prediction using two-level deep convolutional neural networks.
    Adhikari B; Hou J; Cheng J
    Bioinformatics; 2018 May; 34(9):1466-1472. PubMed ID: 29228185
    [TBL] [Abstract][Full Text] [Related]  

  • 34. DeepECA: an end-to-end learning framework for protein contact prediction from a multiple sequence alignment.
    Fukuda H; Tomii K
    BMC Bioinformatics; 2020 Jan; 21(1):10. PubMed ID: 31918654
    [TBL] [Abstract][Full Text] [Related]  

  • 35. rawMSA: End-to-end Deep Learning using raw Multiple Sequence Alignments.
    Mirabello C; Wallner B
    PLoS One; 2019; 14(8):e0220182. PubMed ID: 31415569
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Improving deep learning protein monomer and complex structure prediction using DeepMSA2 with huge metagenomics data.
    Zheng W; Wuyun Q; Li Y; Zhang C; Freddolino PL; Zhang Y
    Nat Methods; 2024 Feb; 21(2):279-289. PubMed ID: 38167654
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Pairing interacting protein sequences using masked language modeling.
    Lupo U; Sgarbossa D; Bitbol AF
    Proc Natl Acad Sci U S A; 2024 Jul; 121(27):e2311887121. PubMed ID: 38913900
    [TBL] [Abstract][Full Text] [Related]  

  • 38. AI-Driven Deep Learning Techniques in Protein Structure Prediction.
    Chen L; Li Q; Nasif KFA; Xie Y; Deng B; Niu S; Pouriyeh S; Dai Z; Chen J; Xie CY
    Int J Mol Sci; 2024 Aug; 25(15):. PubMed ID: 39125995
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Deep learning-assisted prediction of protein-protein interactions in Arabidopsis thaliana.
    Zheng J; Yang X; Huang Y; Yang S; Wuchty S; Zhang Z
    Plant J; 2023 May; 114(4):984-994. PubMed ID: 36919205
    [TBL] [Abstract][Full Text] [Related]  

  • 40. RRCRank: a fusion method using rank strategy for residue-residue contact prediction.
    Jing X; Dong Q; Lu R
    BMC Bioinformatics; 2017 Sep; 18(1):390. PubMed ID: 28865433
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.