These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 36441112)

  • 1. Adsorption of conjugates of lysozyme and fluorescein isothiocyanate in hydrophobic interaction chromatography.
    Kreusser J; Ninni L; Jirasek F; Hasse H
    J Biotechnol; 2022 Dec; 360():133-141. PubMed ID: 36441112
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of pH value and salts on the adsorption of lysozyme in mixed-mode chromatography.
    Kreusser J; Jirasek F; Hasse H
    Eng Life Sci; 2021 Nov; 21(11):753-768. PubMed ID: 34764827
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mathematical modeling of adsorption isotherms in mixed salt systems in hydrophobic interaction chromatography.
    Hackemann E; Hasse H
    Biotechnol Prog; 2018 Sep; 34(5):1251-1260. PubMed ID: 30009582
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of mixed electrolytes and pH on adsorption of bovine serum albumin in hydrophobic interaction chromatography.
    Hackemann E; Hasse H
    J Chromatogr A; 2017 Oct; 1521():73-79. PubMed ID: 28947205
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of mixed electrolytes on the adsorption of lysozyme, PEG, and PEGylated lysozyme on a hydrophobic interaction chromatography resin.
    Hackemann E; Werner A; Hasse H
    Biotechnol Prog; 2017 Jul; 33(4):1104-1115. PubMed ID: 28371508
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental study and modeling of the influence of mixed electrolytes on adsorption of macromolecules on a hydrophobic resin.
    Werner A; Hasse H
    J Chromatogr A; 2013 Nov; 1315():135-44. PubMed ID: 24099781
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein-protein interactions and reduced excluded volume increase dynamic binding capacity of dual salt systems in hydrophobic interaction chromatography.
    Jakob LA; Beyer B; Janeiro Ferreira C; Lingg N; Jungbauer A; Tscheließnig R
    J Chromatogr A; 2021 Jul; 1649():462231. PubMed ID: 34038776
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temperature dependence of adsorption of PEGylated lysozyme and pure polyethylene glycol on a hydrophobic resin: comparison of isothermal titration calorimetry and van't Hoff data.
    Werner A; Hackemann E; Hasse H
    J Chromatogr A; 2014 Aug; 1356():188-96. PubMed ID: 25016322
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microcalorimetric study of the adsorption of PEGylated lysozyme and PEG on a mildly hydrophobic resin: influence of ammonium sulfate.
    Werner A; Blaschke T; Hasse H
    Langmuir; 2012 Aug; 28(31):11376-83. PubMed ID: 22830503
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrophobic interaction chromatography as polishing step enables obtaining ultra-pure recombinant antibodies.
    Pereira Bresolin IRA; Lingg N; Bresolin ITL; Jungbauer A
    J Biotechnol; 2020; 324S():100020. PubMed ID: 34154739
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Studies of lysozyme binding to histamine as a ligand for hydrophobic charge induction chromatography.
    Shi QH; Shen FF; Sun S
    Biotechnol Prog; 2010; 26(1):134-41. PubMed ID: 19785039
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solubility and binding properties of PEGylated lysozyme derivatives with increasing molecular weight on hydrophobic-interaction chromatographic resins.
    Müller E; Josic D; Schröder T; Moosmann A
    J Chromatogr A; 2010 Jul; 1217(28):4696-703. PubMed ID: 20570270
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Water on hydrophobic surfaces: Mechanistic modeling of hydrophobic interaction chromatography.
    Wang G; Hahn T; Hubbuch J
    J Chromatogr A; 2016 Sep; 1465():71-8. PubMed ID: 27575919
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein adsorption isotherm behavior in hydrophobic interaction chromatography.
    Chen J; Cramer SM
    J Chromatogr A; 2007 Sep; 1165(1-2):67-77. PubMed ID: 17698076
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of hydrophobic-interaction chromatography resins for purification of antibody-drug conjugates using a mimetic model with adjustable hydrophobicity.
    Müller E; Sevilla M; Endres P
    J Sep Sci; 2020 Jun; 43(12):2255-2263. PubMed ID: 32160397
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automated hydrophobic interaction chromatography column selection for use in protein purification.
    Murphy PJ; Stone OJ; Anderson ME
    J Vis Exp; 2011 Sep; (55):. PubMed ID: 21968976
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Parameter-by-parameter estimation method for adsorption isotherm in hydrophobic interaction chromatography.
    Yang YX; Chen YC; Yao SJ; Lin DQ
    J Chromatogr A; 2024 Feb; 1716():464638. PubMed ID: 38219627
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Suitability of commercial hydrophobic interaction sorbents for temperature-controlled protein liquid chromatography under low salt conditions.
    Müller TK; Franzreb M
    J Chromatogr A; 2012 Oct; 1260():88-96. PubMed ID: 22954746
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microcalorimetric studies on the interaction mechanism between proteins and hydrophobic solid surfaces in hydrophobic interaction chromatography: effects of salts, hydrophobicity of the sorbent, and structure of the protein.
    Lin FY; Chen WY; Hearn MT
    Anal Chem; 2001 Aug; 73(16):3875-83. PubMed ID: 11534710
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Super Stable Fluorescein Isothiocyanate Isomer I Monolayer for Total Internal Reflection Fluorescence Microscopy.
    Zarski P; Ryder AG
    Langmuir; 2018 Sep; 34(37):10913-10923. PubMed ID: 30145901
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.