These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 36441405)
1. Cost Reduction in the Production of Spirulina Biomass and Biomolecules from Indole-3-Acetic Acid Supplementation in Different Growth Phases. Silveira JTD; Rosa APCD; Morais MG; Costa JAV Appl Biochem Biotechnol; 2023 May; 195(5):2882-2892. PubMed ID: 36441405 [TBL] [Abstract][Full Text] [Related]
2. Spirulina sp. LEB 18 cultivation in seawater and reduced nutrients: Bioprocess strategy for increasing carbohydrates in biomass. Bezerra PQM; Moraes L; Cardoso LG; Druzian JI; Morais MG; Nunes IL; Costa JAV Bioresour Technol; 2020 Nov; 316():123883. PubMed ID: 32739575 [TBL] [Abstract][Full Text] [Related]
3. Spirulina platensis is more efficient than Chlorella homosphaera in carbohydrate productivity. Margarites AC; Volpato N; Araújo E; Cardoso LG; Bertolin TE; Colla LM; Costa JAV Environ Technol; 2017 Sep; 38(17):2209-2216. PubMed ID: 27790947 [TBL] [Abstract][Full Text] [Related]
4. Spirulina sp. LEB 18 cultivation in a raceway-type bioreactor using wastewater from desalination process: Production of carbohydrate-rich biomass. Mata SN; de Souza Santos T; Cardoso LG; Andrade BB; Duarte JH; Costa JAV; Oliveira de Souza C; Druzian JI Bioresour Technol; 2020 Sep; 311():123495. PubMed ID: 32413641 [TBL] [Abstract][Full Text] [Related]
5. Effect of nitrogen limitation on biochemical composition and photosynthetic performance for fed-batch mixotrophic cultivation of microalga Spirulina platensis. Li X; Li W; Zhai J; Wei H Bioresour Technol; 2018 Sep; 263():555-561. PubMed ID: 29778794 [TBL] [Abstract][Full Text] [Related]
6. Brackish Groundwater from Brazilian Backlands in Spirulina Cultures: Potential of Carbohydrate and Polyunsaturated Fatty Acid Production. Duarte JH; Cardoso LG; de Souza CO; Nunes IL; Druzian JI; de Morais MG; Costa JAV Appl Biochem Biotechnol; 2020 Mar; 190(3):907-917. PubMed ID: 31520323 [TBL] [Abstract][Full Text] [Related]
7. Phytohormone supplementation significantly increases growth of Chlamydomonas reinhardtii cultivated for biodiesel production. Park WK; Yoo G; Moon M; Kim CW; Choi YE; Yang JW Appl Biochem Biotechnol; 2013 Nov; 171(5):1128-42. PubMed ID: 23881782 [TBL] [Abstract][Full Text] [Related]
8. Simultaneous Application of Mixotrophic Culture and Magnetic Fields as a Strategy to Improve Spirulina sp. LEB 18 Phycocyanin Synthesis. Cordeiro AP; Nogueira AOM; Salgado HZ; Kokuszi LTF; Costa JAV; de Lima VR; Santos LO Curr Microbiol; 2021 Dec; 78(12):4014-4022. PubMed ID: 34595548 [TBL] [Abstract][Full Text] [Related]
9. Innovative application of brackish groundwater without the addition of nutrients in the cultivation of Spirulina and Chlorella for carbohydrate and lipid production. Bezerra PQM; Moraes L; Silva TNM; Cardoso LG; Druzian JI; Morais MG; Nunes IL; Costa JAV Bioresour Technol; 2022 Feb; 345():126543. PubMed ID: 34902481 [TBL] [Abstract][Full Text] [Related]
10. Increase in the carbohydrate content of the microalgae Spirulina in culture by nutrient starvation and the addition of residues of whey protein concentrate. Vieira Salla AC; Margarites AC; Seibel FI; Holz LC; Brião VB; Bertolin TE; Colla LM; Costa JA Bioresour Technol; 2016 Jun; 209():133-41. PubMed ID: 26967336 [TBL] [Abstract][Full Text] [Related]
11. Production and characterization of Spirulina sp. LEB 18 cultured in reused Zarrouk's medium in a raceway-type bioreactor. Andrade BB; Cardoso LG; Assis DJ; Costa JAV; Druzian JI; da Cunha Lima ST Bioresour Technol; 2019 Jul; 284():340-348. PubMed ID: 30954902 [TBL] [Abstract][Full Text] [Related]
12. Cultivation strategy to stimulate high carbohydrate content in Spirulina biomass. Braga VDS; Mastrantonio DJDS; Costa JAV; Morais MG Bioresour Technol; 2018 Dec; 269():221-226. PubMed ID: 30176519 [TBL] [Abstract][Full Text] [Related]
13. Role of light emitting diode (LED) wavelengths on increase of protein productivity and free amino acid profile of Spirulina sp. cultures. da Fontoura Prates D; Duarte JH; Vendruscolo RG; Wagner R; Ballus CA; da Silva Oliveira W; Godoy HT; Barcia MT; de Morais MG; Radmann EM; Costa JAV Bioresour Technol; 2020 Jun; 306():123184. PubMed ID: 32238318 [TBL] [Abstract][Full Text] [Related]
14. Chemical absorption and CO2 biofixation via the cultivation of Spirulina in semicontinuous mode with nutrient recycle. da Rosa GM; Moraes L; Cardias BB; de Souza Mda R; Costa JA Bioresour Technol; 2015 Sep; 192():321-7. PubMed ID: 26051496 [TBL] [Abstract][Full Text] [Related]
15. Magnetic fields exhibit a positive impact on lipid and biomass yield during phototrophic cultivation of Spirulina sp. da Costa Menestrino B; Sala L; Costa JAV; Buffon JG; Santos LO Bioprocess Biosyst Eng; 2021 Oct; 44(10):2087-2097. PubMed ID: 34027616 [TBL] [Abstract][Full Text] [Related]
16. Effect of ammonium nitrogen on microalgal growth, biochemical composition and photosynthetic performance in mixotrophic cultivation. Li X; Li W; Zhai J; Wei H; Wang Q Bioresour Technol; 2019 Feb; 273():368-376. PubMed ID: 30453251 [TBL] [Abstract][Full Text] [Related]
17. Magnetic fields as triggers of microalga growth: evaluation of its effect on Spirulina sp. Deamici KM; Costa JAV; Santos LO Bioresour Technol; 2016 Nov; 220():62-67. PubMed ID: 27566513 [TBL] [Abstract][Full Text] [Related]
18. Influence of nitrogen on growth, biomass composition, production, and properties of polyhydroxyalkanoates (PHAs) by microalgae. Costa SS; Miranda AL; Andrade BB; Assis DJ; Souza CO; de Morais MG; Costa JAV; Druzian JI Int J Biol Macromol; 2018 Sep; 116():552-562. PubMed ID: 29763703 [TBL] [Abstract][Full Text] [Related]
19. Magnetic fields: biomass potential of Spirulina sp. for food supplement. Veiga MC; Fontoura MM; de Oliveira MG; Costa JAV; Santos LO Bioprocess Biosyst Eng; 2020 Jul; 43(7):1231-1240. PubMed ID: 32144594 [TBL] [Abstract][Full Text] [Related]