These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 36441512)
1. Investigation of the Plasmon-Activated C-C Coupling Reactions by Liquid-State SERS Measurement. Wei Y; Hao Q; Fan X; Li M; Yao L; Li G; Zhao X; Huang H; Qiu T ACS Appl Mater Interfaces; 2022 Dec; 14(48):54320-54327. PubMed ID: 36441512 [TBL] [Abstract][Full Text] [Related]
2. Differentiating Plasmon-Enhanced Chemical Reactions on AgPd Hollow Nanoplates through Surface-Enhanced Raman Spectroscopy. Jiao S; Dai K; Besteiro LV; Gao H; Chen X; Wang W; Zhang Y; Liu C; Pérez-Juste I; Pérez-Juste J; Pastoriza-Santos I; Zheng G ACS Catal; 2024 May; 14(9):6799-6806. PubMed ID: 38721378 [TBL] [Abstract][Full Text] [Related]
3. Probing Oxidation Mechanisms in Plasmonic Catalysis: Unraveling the Role of Reactive Oxygen Species. Wei Y; Fan X; Chen D; Zhu X; Yao L; Zhao X; Tang X; Wang J; Zhang Y; Qiu T; Hao Q Nano Lett; 2024 Feb; 24(6):2110-2117. PubMed ID: 38290214 [TBL] [Abstract][Full Text] [Related]
4. Plasmon-Driven Catalysis on Molecules and Nanomaterials. Zhang Z; Zhang C; Zheng H; Xu H Acc Chem Res; 2019 Sep; 52(9):2506-2515. PubMed ID: 31424904 [TBL] [Abstract][Full Text] [Related]
5. Coupling plasmon and catalytic-active hotspots of Au@Pt core-satellite nanoparticles for in-situ spectroscopic observation of plasmon-promoted decarboxylation. Fu X; Li Z; Zhao J; Yang J; Zhu G; Li G; Huo P J Colloid Interface Sci; 2024 Dec; 676():127-138. PubMed ID: 39018805 [TBL] [Abstract][Full Text] [Related]
6. How Does a Plasmon-Induced Hot Charge Carrier Break a C-C Bond? Huh H; Trinh HD; Lee D; Yoon S ACS Appl Mater Interfaces; 2019 Jul; 11(27):24715-24724. PubMed ID: 31192584 [TBL] [Abstract][Full Text] [Related]
7. Plasmon-promoted electrocatalytic water splitting on metal-semiconductor nanocomposites: the interfacial charge transfer and the real catalytic sites. Du L; Shi G; Zhao Y; Chen X; Sun H; Liu F; Cheng F; Xie W Chem Sci; 2019 Nov; 10(41):9605-9612. PubMed ID: 32055334 [TBL] [Abstract][Full Text] [Related]
9. Exploiting Plasmonic Hot Spots in Au-Based Nanostructures for Sensing and Photocatalysis. Wy Y; Jung H; Hong JW; Han SW Acc Chem Res; 2022 Mar; 55(6):831-843. PubMed ID: 35213153 [TBL] [Abstract][Full Text] [Related]
10. Hybrid Au-Ag Nanostructures for Enhanced Plasmon-Driven Catalytic Selective Hydrogenation through Visible Light Irradiation and Surface-Enhanced Raman Scattering. Yin Z; Wang Y; Song C; Zheng L; Ma N; Liu X; Li S; Lin L; Li M; Xu Y; Li W; Hu G; Fang Z; Ma D J Am Chem Soc; 2018 Jan; 140(3):864-867. PubMed ID: 29301395 [TBL] [Abstract][Full Text] [Related]
12. Flexible Surface-Enhanced Raman Scattering Chip: A Universal Platform for Real-Time Interfacial Molecular Analysis with Femtomolar Sensitivity. Hao Q; Li M; Wang J; Fan X; Jiang J; Wang X; Zhu M; Qiu T; Ma L; Chu PK; Schmidt OG ACS Appl Mater Interfaces; 2020 Dec; 12(48):54174-54180. PubMed ID: 33205645 [TBL] [Abstract][Full Text] [Related]
13. Spatial Separation of Plasmonic Hot-Electron Generation and a Hydrodehalogenation Reaction Center Using a DNA Wire. Kogikoski S; Dutta A; Bald I ACS Nano; 2021 Dec; 15(12):20562-20573. PubMed ID: 34875168 [TBL] [Abstract][Full Text] [Related]
14. Plasmonic reactivity of halogen thiophenols on gold nanoparticles studied by SERS and XPS. Schürmann R; Dutta A; Ebel K; Tapio K; Milosavljević AR; Bald I J Chem Phys; 2022 Aug; 157(8):084708. PubMed ID: 36050023 [TBL] [Abstract][Full Text] [Related]
15. Unveiling the Mechanism of Plasmon Photocatalysis via Multiquantum Vibrational Excitation. Jeong J; Shin HH; Kim ZH ACS Nano; 2024 Sep; 18(36):25290-25301. PubMed ID: 39185823 [TBL] [Abstract][Full Text] [Related]
16. Preparation of Silver-Palladium Alloyed Nanoparticles for Plasmonic Catalysis under Visible-Light Illumination. Peiris E; Hanauer S; Knapas K; Camargo PHC J Vis Exp; 2020 Aug; (162):. PubMed ID: 32894264 [TBL] [Abstract][Full Text] [Related]
17. Enhancement of Scattering and Near Field of TiO Liu M; Jin X; Li S; Billeau JB; Peng T; Li H; Zhao L; Zhang Z; Claverie JP; Razzari L; Zhang J ACS Appl Mater Interfaces; 2021 Jul; 13(29):34714-34723. PubMed ID: 34269047 [TBL] [Abstract][Full Text] [Related]
18. Microscopic Understanding of Reaction Rates Observed in Plasmon Chemistry of Nanoparticle-Ligand Systems. Schürmann R; Nagel A; Juergensen S; Pathak A; Reich S; Pacholski C; Bald I J Phys Chem C Nanomater Interfaces; 2022 Mar; 126(11):5333-5342. PubMed ID: 35359815 [TBL] [Abstract][Full Text] [Related]
19. In Situ Monitoring of Palladium-Catalyzed Chemical Reactions by Nanogap-Enhanced Raman Scattering using Single Pd Cube Dimers. Wang D; Shi F; Jose J; Hu Y; Zhang C; Zhu A; Grzeschik R; Schlücker S; Xie W J Am Chem Soc; 2022 Mar; 144(11):5003-5009. PubMed ID: 35286081 [TBL] [Abstract][Full Text] [Related]
20. Plasmon-driven surface catalysis in hybridized plasmonic gap modes. Wang H; Liu T; Huang Y; Fang Y; Liu R; Wang S; Wen W; Sun M Sci Rep; 2014 Nov; 4():7087. PubMed ID: 25404139 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]