These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 36441711)

  • 1. Non-intrusive deep learning-based computational speech metrics with high-accuracy across a wide range of acoustic scenes.
    Diehl PU; Thorbergsson L; Singer Y; Skripniuk V; Pudszuhn A; Hofmann VM; Sprengel E; Meyer-Rachner P
    PLoS One; 2022; 17(11):e0278170. PubMed ID: 36441711
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of a Deep Recurrent Neural Network to Reduce Wind Noise: Effects on Judged Speech Intelligibility and Sound Quality.
    Keshavarzi M; Goehring T; Zakis J; Turner RE; Moore BCJ
    Trends Hear; 2018; 22():2331216518770964. PubMed ID: 29708061
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On a reference-free speech quality estimator for hearing aids.
    Suelzle D; Parsa V; Falk TH
    J Acoust Soc Am; 2013 May; 133(5):EL412-8. PubMed ID: 23656102
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of room acoustic parameters on speech and music perception among participants with cochlear implants.
    Eurich B; Klenzner T; Oehler M
    Hear Res; 2019 Jun; 377():122-132. PubMed ID: 30933704
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automatic User Preferences Selection of Smart Hearing Aid Using BioAid.
    Siddiqui HUR; Saleem AA; Raza MA; Zafar K; Russo R; Dudley S
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298382
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatial speech detection for binaural hearing aids using deep phoneme classifiers.
    Kayser H; Hermansky H; Meyer BT
    Acta Acust (2020); 2022; 6():. PubMed ID: 36159631
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Comparative Study of Features for Acoustic Cough Detection Using Deep Architectures
    Miranda IDS; Diacon AH; Niesler TR
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():2601-2605. PubMed ID: 31946429
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-Intrusive Speech Quality Assessment Based on Deep Neural Networks for Speech Communication.
    Liu M; Wang J; Wang F; Xiang F; Chen J
    IEEE Trans Neural Netw Learn Syst; 2023 Oct; PP():. PubMed ID: 37824322
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving the performance of hearing aids in noisy environments based on deep learning technology.
    Lai YH; Zheng WZ; Tang ST; Fang SH; Liao WH; Tsao Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():404-408. PubMed ID: 30440419
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Speech Perception in Classroom Acoustics by Children With Hearing Loss and Wearing Hearing Aids.
    Iglehart F
    Am J Audiol; 2020 Mar; 29(1):6-17. PubMed ID: 31835909
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of a "direct-comparison" approach to automatic switching in omnidirectional/directional hearing aids.
    Summers V; Grant KW; Walden BE; Cord MT; Surr RK; Elhilali M
    J Am Acad Audiol; 2008 Oct; 19(9):708-20. PubMed ID: 19418710
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatial Acoustic Scenarios in Multichannel Loudspeaker Systems for Hearing Aid Evaluation.
    Grimm G; Kollmeier B; Hohmann V
    J Am Acad Audiol; 2016 Jul; 27(7):557-66. PubMed ID: 27406662
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of noise, nonlinear processing, and linear filtering on perceived speech quality.
    Arehart KH; Kates JM; Anderson MC
    Ear Hear; 2010 Jun; 31(3):420-36. PubMed ID: 20440116
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Speech analysis for health: Current state-of-the-art and the increasing impact of deep learning.
    Cummins N; Baird A; Schuller BW
    Methods; 2018 Dec; 151():41-54. PubMed ID: 30099083
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CiwGAN and fiwGAN: Encoding information in acoustic data to model lexical learning with Generative Adversarial Networks.
    Beguš G
    Neural Netw; 2021 Jul; 139():305-325. PubMed ID: 33873122
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonlinear frequency compression: effects on sound quality ratings of speech and music.
    Parsa V; Scollie S; Glista D; Seelisch A
    Trends Amplif; 2013 Mar; 17(1):54-68. PubMed ID: 23539261
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lightweight deep convolutional neural network for background sound classification in speech signals.
    Dayal A; Yeduri SR; Koduru BH; Jaiswal RK; Soumya J; Srinivas MB; Pandey OJ; Cenkeramaddi LR
    J Acoust Soc Am; 2022 Apr; 151(4):2773. PubMed ID: 35461490
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Benchmarking Deep Learning Models for Tooth Structure Segmentation.
    Schneider L; Arsiwala-Scheppach L; Krois J; Meyer-Lueckel H; Bressem KK; Niehues SM; Schwendicke F
    J Dent Res; 2022 Oct; 101(11):1343-1349. PubMed ID: 35686357
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determining perceived sound quality in a simulated hearing aid using the international speech test signal.
    Arehart KH; Kates JM; Anderson MC; Moats P
    Ear Hear; 2011; 32(4):533-5. PubMed ID: 21325947
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational bioacoustics with deep learning: a review and roadmap.
    Stowell D
    PeerJ; 2022; 10():e13152. PubMed ID: 35341043
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.