These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 36441711)

  • 21. Sound Quality Effects of an Adaptive Nonlinear Frequency Compression Processor with Normal-Hearing and Hearing-Impaired Listeners.
    Glista D; Hawkins M; Vaisberg JM; Pourmand N; Parsa V; Scollie S
    J Am Acad Audiol; 2019; 30(7):552-563. PubMed ID: 30395533
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Wireless and acoustic hearing with bone-anchored hearing devices.
    Bosman AJ; Mylanus EA; Hol MK; Snik AF
    Int J Audiol; 2015 Jul; 55(7):419-24. PubMed ID: 27176657
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Single-ended prediction of listening effort using deep neural networks.
    Huber R; Krüger M; Meyer BT
    Hear Res; 2018 Mar; 359():40-49. PubMed ID: 29373159
    [TBL] [Abstract][Full Text] [Related]  

  • 24. MABAL: a Novel Deep-Learning Architecture for Machine-Assisted Bone Age Labeling.
    Mutasa S; Chang PD; Ruzal-Shapiro C; Ayyala R
    J Digit Imaging; 2018 Aug; 31(4):513-519. PubMed ID: 29404850
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Acoustic Environments in Which Older Adults Wear Their Hearing Aids: Insights From Datalogging Sound Environment Classification.
    Humes LE; Rogers SE; Main AK; Kinney DL
    Am J Audiol; 2018 Dec; 27(4):594-603. PubMed ID: 30267099
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An overview of the HASPI and HASQI metrics for predicting speech intelligibility and speech quality for normal hearing, hearing loss, and hearing aids.
    Kates JM; Arehart KH
    Hear Res; 2022 Dec; 426():108608. PubMed ID: 36137862
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Speech enhancement based on neural networks improves speech intelligibility in noise for cochlear implant users.
    Goehring T; Bolner F; Monaghan JJ; van Dijk B; Zarowski A; Bleeck S
    Hear Res; 2017 Feb; 344():183-194. PubMed ID: 27913315
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Observation and assessment of acoustic contamination of electrophysiological brain signals during speech production and sound perception.
    Roussel P; Godais GL; Bocquelet F; Palma M; Hongjie J; Zhang S; Giraud AL; Mégevand P; Miller K; Gehrig J; Kell C; Kahane P; Chabardés S; Yvert B
    J Neural Eng; 2020 Oct; 17(5):056028. PubMed ID: 33055383
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The performance of an automatic acoustic-based program classifier compared to hearing aid users' manual selection of listening programs.
    Searchfield GD; Linford T; Kobayashi K; Crowhen D; Latzel M
    Int J Audiol; 2018 Mar; 57(3):201-212. PubMed ID: 29069954
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Listener Performance with a Novel Hearing Aid Frequency Lowering Technique.
    Kirby BJ; Kopun JG; Spratford M; Mollak CM; Brennan MA; McCreery RW
    J Am Acad Audiol; 2017 Oct; 28(9):810-822. PubMed ID: 28972470
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evaluating the Potential Gain of Auditory and Audiovisual Speech-Predictive Coding Using Deep Learning.
    Hueber T; Tatulli E; Girin L; Schwartz JL
    Neural Comput; 2020 Mar; 32(3):596-625. PubMed ID: 31951798
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of sound-absorbing treatment on speech discrimination in rooms.
    Pekkarinen E; Viljanen V
    Audiology; 1990; 29(4):219-27. PubMed ID: 2222291
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bioacoustic classification of avian calls from raw sound waveforms with an open-source deep learning architecture.
    Bravo Sanchez FJ; Hossain MR; English NB; Moore ST
    Sci Rep; 2021 Aug; 11(1):15733. PubMed ID: 34344970
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Deep Neural Network Model of Hearing-Impaired Speech-in-Noise Perception.
    Haro S; Smalt CJ; Ciccarelli GA; Quatieri TF
    Front Neurosci; 2020; 14():588448. PubMed ID: 33384579
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Estimating the spectral tilt of the glottal source from telephone speech using a deep neural network.
    Jokinen E; Alku P
    J Acoust Soc Am; 2017 Apr; 141(4):EL327. PubMed ID: 28464691
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Acoustic and perceptual effects of magnifying interaural difference cues in a simulated "binaural" hearing aid.
    de Taillez T; Grimm G; Kollmeier B; Neher T
    Int J Audiol; 2018 Jun; 57(sup3):S81-S91. PubMed ID: 28395561
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An Evaluation of Output Signal to Noise Ratio as a Predictor of Cochlear Implant Speech Intelligibility.
    Watkins GD; Swanson BA; Suaning GJ
    Ear Hear; 2018; 39(5):958-968. PubMed ID: 29474218
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Effect of a High Upper Input Limiting Level on Word Recognition in Noise, Sound Quality Preferences, and Subjective Ratings of Real-World Performance.
    Oeding K; Valente M
    J Am Acad Audiol; 2015 Jun; 26(6):547-62. PubMed ID: 26134722
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A deep learning algorithm to increase intelligibility for hearing-impaired listeners in the presence of a competing talker and reverberation.
    Healy EW; Delfarah M; Johnson EM; Wang D
    J Acoust Soc Am; 2019 Mar; 145(3):1378. PubMed ID: 31067936
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Common Sound Scenarios: A Context-Driven Categorization of Everyday Sound Environments for Application in Hearing-Device Research.
    Wolters F; Smeds K; Schmidt E; Christensen EK; Norup C
    J Am Acad Audiol; 2016 Jul; 27(7):527-40. PubMed ID: 27406660
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.