These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 36441886)

  • 1. A Comparison of Signal Combinations for Deep Learning-Based Simultaneous Sleep Staging and Respiratory Event Detection.
    Huttunen R; Leppanen T; Duce B; Arnardottir ES; Nikkonen S; Myllymaa S; Toyras J; Korkalainen H
    IEEE Trans Biomed Eng; 2023 May; 70(5):1704-1714. PubMed ID: 36441886
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pediatric pulse oximetry-based OSA screening at different thresholds of the apnea-hypopnea index with an expression of uncertainty for inconclusive classifications.
    Garde A; Hoppenbrouwer X; Dehkordi P; Zhou G; Rollinson AU; Wensley D; Dumont GA; Ansermino JM
    Sleep Med; 2019 Aug; 60():45-52. PubMed ID: 31288931
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep learning enables sleep staging from photoplethysmogram for patients with suspected sleep apnea.
    Korkalainen H; Aakko J; Duce B; Kainulainen S; Leino A; Nikkonen S; Afara IO; Myllymaa S; Töyräs J; Leppänen T
    Sleep; 2020 Nov; 43(11):. PubMed ID: 32436942
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A deep learning model based on the combination of convolutional and recurrent neural networks to enhance pulse oximetry ability to classify sleep stages in children with sleep apnea.
    Vaquerizo-Villar F; Alvarez D; Gutierrez-Tobal GC; Del Campo F; Gozal D; Kheirandish-Gozal L; Penzel T; Hornero R
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38082822
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of obstructive sleep apnea-related sleep fragmentation utilizing deep learning-based sleep staging from photoplethysmography.
    Huttunen R; Leppänen T; Duce B; Oksenberg A; Myllymaa S; Töyräs J; Korkalainen H
    Sleep; 2021 Oct; 44(10):. PubMed ID: 34089616
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep-Learning Model Based on Convolutional Neural Networks to Classify Apnea-Hypopnea Events from the Oximetry Signal.
    Vaquerizo-Villar F; Álvarez D; Gutiérrez-Tobal GC; Arroyo-Domingo CA; Del Campo F; Hornero R
    Adv Exp Med Biol; 2022; 1384():255-264. PubMed ID: 36217089
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of obstructive sleep apnea on sleep-wake stage ratio.
    Ng AK; Guan C
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4660-3. PubMed ID: 23366967
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Relationship between sleep architecture and severity of obstructive sleep apnea].
    Wu B; Cai J; Yao Y; Pan Y; Pan L; Zhang L; Sun Y
    Zhejiang Da Xue Xue Bao Yi Xue Ban; 2020 Aug; 49(4):455-461. PubMed ID: 32985158
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automatic Respiratory Event Scoring in Obstructive Sleep Apnea Using a Long Short-Term Memory Neural Network.
    Nikkonen S; Korkalainen H; Leino A; Myllymaa S; Duce B; Leppanen T; Toyras J
    IEEE J Biomed Health Inform; 2021 Aug; 25(8):2917-2927. PubMed ID: 33687851
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effectiveness of home single-channel nasal pressure for sleep apnea diagnosis.
    Masa JF; Duran-Cantolla J; Capote F; Cabello M; Abad J; Garcia-Rio F; Ferrer A; Mayos M; Gonzalez-Mangado N; de la Peña M; Aizpuru F; Barbe F; Montserrat JM; ; Larrateguy LD; de Castro JR; Garcia-Ledesma E; Utrabo I; Corral J; Martinez-Null C; Egea C; Cancelo L; García-Díaz E; Carmona-Bernal C; Sánchez-Armengol A; Fortuna AM; Miralda RM; Troncoso MF; Monica G; Martinez-Martinez M; Cantalejo O; Piérola J; Vigil L; Embid C; Del Mar Centelles M; Prieto TR; Rojo B; Vanesa L
    Sleep; 2014 Dec; 37(12):1953-61. PubMed ID: 25325484
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimating the Severity of Obstructive Sleep Apnea Using ECG, Respiratory Effort and Neural Networks.
    Fonseca P; Ross M; Cerny A; Anderer P; Schipper F; Grassi A; van Gilst M; Overeem S
    IEEE J Biomed Health Inform; 2024 Jul; 28(7):3895-3906. PubMed ID: 38551823
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automatic identification of sleep and wakefulness using single-channel EEG and respiratory polygraphy signals for the diagnosis of obstructive sleep apnea.
    Sabil A; Vanbuis J; Baffet G; Feuilloy M; Le Vaillant M; Meslier N; Gagnadoux F
    J Sleep Res; 2019 Apr; 28(2):e12795. PubMed ID: 30478923
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accurate Deep Learning-Based Sleep Staging in a Clinical Population With Suspected Obstructive Sleep Apnea.
    Korkalainen H; Aakko J; Nikkonen S; Kainulainen S; Leino A; Duce B; Afara IO; Myllymaa S; Toyras J; Leppanen T
    IEEE J Biomed Health Inform; 2020 Jul; 24(7):2073-2081. PubMed ID: 31869808
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection of sleep disordered breathing and its central/obstructive character using nasal cannula and finger pulse oximeter.
    Sommermeyer D; Zou D; Grote L; Hedner J
    J Clin Sleep Med; 2012 Oct; 8(5):527-33. PubMed ID: 23066364
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accuracy of residual apnea-hypopnea index obtained using the continuous positive airway pressure device: application of new version 2.0 scoring rules for respiratory events during sleep.
    Kim DE; Hwangbo Y; Bae JH; Yang KI
    Sleep Breath; 2015 Dec; 19(4):1335-41. PubMed ID: 26407962
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Utility of bispectrum in the screening of pediatric sleep apnea-hypopnea syndrome using oximetry recordings.
    Vaquerizo-Villar F; Álvarez D; Kheirandish-Gozal L; Gutiérrez-Tobal GC; Barroso-García V; Crespo A; Del Campo F; Gozal D; Hornero R
    Comput Methods Programs Biomed; 2018 Mar; 156():141-149. PubMed ID: 29428066
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polysomnographic validation of an under-mattress monitoring device in estimating sleep architecture and obstructive sleep apnea in adults.
    Ding F; Cotton-Clay A; Fava L; Easwar V; Kinsolving A; Kahn P; Rama A; Kushida C
    Sleep Med; 2022 Aug; 96():20-27. PubMed ID: 35576830
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of a portable recording device (ApneaLink) for case selection of obstructive sleep apnea.
    Chen H; Lowe AA; Bai Y; Hamilton P; Fleetham JA; Almeida FR
    Sleep Breath; 2009 Aug; 13(3):213-9. PubMed ID: 19052790
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Is the Nox-T3 device scoring algorithm accurate enough for the diagnosis of obstructive sleep apnea?
    Valério MP; Pereira S; Moita J; Teixeira F; Travassos C; Coutinho AS; Rodrigues DM
    Adv Respir Med; 2021; 89(3):262-267. PubMed ID: 34196378
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detecting obstructive sleep apnea in children by self-affine visualization of oximetry.
    Garde A; Dekhordi P; Petersen CL; Ansermino JM; Dumont GA
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():3757-3760. PubMed ID: 29060715
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.