These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. FedBrain: Federated Training of Graph Neural Networks for Connectome-based Brain Imaging Analysis. Yang Y; Xie H; Cui H; Yang C Pac Symp Biocomput; 2024; 29():214-225. PubMed ID: 38160281 [TBL] [Abstract][Full Text] [Related]
8. Adapt to Adaptation: Learning Personalization for Cross-Silo Federated Learning. Luo J; Wu S IJCAI (U S); 2022 Jul; 2022():2166-2173. PubMed ID: 37193322 [TBL] [Abstract][Full Text] [Related]
9. A comparative study of machine learning methods for predicting the evolution of brain connectivity from a baseline timepoint. Aktı Ş; Kamar D; Özlü ÖA; Soydemir I; Akcan M; Kul A; Rekik I J Neurosci Methods; 2022 Feb; 368():109475. PubMed ID: 34995648 [TBL] [Abstract][Full Text] [Related]
10. Multi-site fMRI analysis using privacy-preserving federated learning and domain adaptation: ABIDE results. Li X; Gu Y; Dvornek N; Staib LH; Ventola P; Duncan JS Med Image Anal; 2020 Oct; 65():101765. PubMed ID: 32679533 [TBL] [Abstract][Full Text] [Related]
11. Multiphysical graph neural network (MP-GNN) for COVID-19 drug design. Li XS; Liu X; Lu L; Hua XS; Chi Y; Xia K Brief Bioinform; 2022 Jul; 23(4):. PubMed ID: 35696650 [TBL] [Abstract][Full Text] [Related]
12. Graph Neural Networks in Network Neuroscience. Bessadok A; Mahjoub MA; Rekik I IEEE Trans Pattern Anal Mach Intell; 2023 May; 45(5):5833-5848. PubMed ID: 36155474 [TBL] [Abstract][Full Text] [Related]
13. Predicting the evolution trajectory of population-driven connectional brain templates using recurrent multigraph neural networks. Demirbilek O; Rekik I; Med Image Anal; 2023 Jan; 83():102649. PubMed ID: 36257134 [TBL] [Abstract][Full Text] [Related]
14. Template-based graph registration network for boosting the diagnosis of brain connectivity disorders. Gürler Z; Gharsallaoui MA; Rekik I; Comput Med Imaging Graph; 2023 Jan; 103():102140. PubMed ID: 36470102 [TBL] [Abstract][Full Text] [Related]
15. Federated Noisy Client Learning. Tam K; Li L; Han B; Xu C; Fu H IEEE Trans Neural Netw Learn Syst; 2023 Dec; PP():. PubMed ID: 38039172 [TBL] [Abstract][Full Text] [Related]
16. FedNI: Federated Graph Learning With Network Inpainting for Population-Based Disease Prediction. Peng L; Wang N; Dvornek N; Zhu X; Li X IEEE Trans Med Imaging; 2023 Jul; 42(7):2032-2043. PubMed ID: 35788451 [TBL] [Abstract][Full Text] [Related]
17. ESA-FedGNN: Efficient secure aggregation for federated graph neural networks. Liu Y; Li H; Qian X; Hao M Peer Peer Netw Appl; 2023; 16(2):1257-1269. PubMed ID: 37152768 [TBL] [Abstract][Full Text] [Related]
18. Label-Efficient Self-Supervised Federated Learning for Tackling Data Heterogeneity in Medical Imaging. Yan R; Qu L; Wei Q; Huang SC; Shen L; Rubin DL; Xing L; Zhou Y IEEE Trans Med Imaging; 2023 Jul; 42(7):1932-1943. PubMed ID: 37018314 [TBL] [Abstract][Full Text] [Related]
19. Ensemble-GNN: federated ensemble learning with graph neural networks for disease module discovery and classification. Pfeifer B; Chereda H; Martin R; Saranti A; Clemens S; Hauschild AC; Beißbarth T; Holzinger A; Heider D Bioinformatics; 2023 Nov; 39(11):. PubMed ID: 37988152 [TBL] [Abstract][Full Text] [Related]
20. NPI-GNN: Predicting ncRNA-protein interactions with deep graph neural networks. Shen ZA; Luo T; Zhou YK; Yu H; Du PF Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33822882 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]