These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 364419)

  • 41. Escherichia coli RNase D. Purification and structural characterization of a putative processing nuclease.
    Cudny H; Zaniewski R; Deutscher MP
    J Biol Chem; 1981 Jun; 256(11):5627-32. PubMed ID: 6263885
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Processing of mammalian tRNA transcripts in vitro: different pre-tRNAs are processed along alternative pathways that contain a common rate-limiting step.
    Rooney RJ; Harding JD
    Nucleic Acids Res; 1986 Jun; 14(12):4849-64. PubMed ID: 3725588
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Novel mechanism of post-transcriptional modification of tRNA. Insertion of bases of Q precursors into tRNA by a specific tRNA transglycosylase reaction.
    Okada N; Noguchi S; Kasai H; Shindo-Okada N; Ohgi T; Goto T; Nishimura S
    J Biol Chem; 1979 Apr; 254(8):3067-73. PubMed ID: 372186
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effect of sodium bisulfite modification on the arginine acceptance of E. coli tRNA Arg.
    Chakraburtty K
    Nucleic Acids Res; 1975 Oct; 2(10):1793-804. PubMed ID: 1103086
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Cytidines in tRNAs that are required intact by ATP/CTP:tRNA nucleotidyltransferases from Escherichia coli and Saccharomyces cerevisiae.
    Hegg LA; Thurlow DL
    Nucleic Acids Res; 1990 Oct; 18(20):5975-9. PubMed ID: 1700367
    [TBL] [Abstract][Full Text] [Related]  

  • 46. RNase PH: an Escherichia coli phosphate-dependent nuclease distinct from polynucleotide phosphorylase.
    Deutscher MP; Marshall GT; Cudny H
    Proc Natl Acad Sci U S A; 1988 Jul; 85(13):4710-4. PubMed ID: 2455297
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Identification of individual nucleotides in the bacterial ribonuclease P ribozyme adjacent to the pre-tRNA cleavage site by short-range photo-cross-linking.
    Christian EL; McPheeters DS; Harris ME
    Biochemistry; 1998 Dec; 37(50):17618-28. PubMed ID: 9860878
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Nucleotide modification in vitro of the precursor of transfer RNA of Escherichia coli.
    Schaefer KP; Altman S; Söll D
    Proc Natl Acad Sci U S A; 1973 Dec; 70(12):3626-30. PubMed ID: 4587257
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Transfer RNA processing enzymes.
    Altman S
    Cell; 1981 Jan; 23(1):3-4. PubMed ID: 7011569
    [No Abstract]   [Full Text] [Related]  

  • 50. An Escherichia coli ribonuclease which removes an extra nucleotide from a biosynthetic intermediate of bacteriophage T4 proline transfer RNA.
    Schmidt FJ; McClain WH
    Nucleic Acids Res; 1978 Nov; 5(11):4129-39. PubMed ID: 364422
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Isolation and characterization of large transfer ribonucleic acid precursors from Escherichia coli.
    Ilgen C; Kirk LL; Carbon J
    J Biol Chem; 1976 Feb; 251(4):922-9. PubMed ID: 765341
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Complementary sequences 1700 nucleotides apart form a ribonuclease III cleavage site in Escherichia coli ribosomal precursor RNA.
    Young RA; Steitz JA
    Proc Natl Acad Sci U S A; 1978 Aug; 75(8):3593-7. PubMed ID: 358189
    [TBL] [Abstract][Full Text] [Related]  

  • 53. tRNA 3' end maturation in archaea has eukaryotic features: the RNase Z from Haloferax volcanii.
    Schierling K; Rösch S; Rupprecht R; Schiffer S; Marchfelder A
    J Mol Biol; 2002 Mar; 316(4):895-902. PubMed ID: 11884130
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Influence of transfer RNA tertiary structure on aminoacylation efficiency by glutaminyl and cysteinyl-tRNA synthetases.
    Sherlin LD; Bullock TL; Newberry KJ; Lipman RS; Hou YM; Beijer B; Sproat BS; Perona JJ
    J Mol Biol; 2000 Jun; 299(2):431-46. PubMed ID: 10860750
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Artificial self-cleaving molecules consisting of a tRNA precursor and the catalytic RNA of RNase P.
    Kikuchi Y; Sasaki-Tozawa N; Suzuki K
    Nucleic Acids Res; 1993 Oct; 21(20):4685-9. PubMed ID: 8233817
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Kinetics and thermodynamics of the RNase P RNA cleavage reaction: analysis of tRNA 3'-end variants.
    Hardt WD; Schlegl J; Erdmann VA; Hartmann RK
    J Mol Biol; 1995 Mar; 247(2):161-72. PubMed ID: 7535857
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Characterization of yeast mitochondrial RNase P: an intact RNA subunit is not essential for activity in vitro.
    Morales MJ; Wise CA; Hollingsworth MJ; Martin NC
    Nucleic Acids Res; 1989 Sep; 17(17):6865-81. PubMed ID: 2476723
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Yeast tRNA precursor mutated at a splice junction is correctly processed in vivo.
    Colby D; Leboy PS; Guthrie C
    Proc Natl Acad Sci U S A; 1981 Jan; 78(1):415-9. PubMed ID: 7017715
    [TBL] [Abstract][Full Text] [Related]  

  • 59. 3' processing of tRNA precursors in ribonuclease-deficient Escherichia coli. Development and characterization of an in vitro processing system and evidence for a phosphate requirement.
    Cudny H; Deutscher MP
    J Biol Chem; 1988 Jan; 263(3):1518-23. PubMed ID: 3275667
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Mutational analysis of the joining regions flanking helix P18 in E. coli RNase P RNA.
    Hardt WD; Hartmann RK
    J Mol Biol; 1996 Jun; 259(3):422-33. PubMed ID: 8676378
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.