These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 36442144)
21. Mechanisms of arsenic attenuation in acid mine drainage from Mount Bischoff, western Tasmania. Gault AG; Cooke DR; Townsend AT; Charnock JM; Polya DA Sci Total Environ; 2005 Jun; 345(1-3):219-28. PubMed ID: 15919541 [TBL] [Abstract][Full Text] [Related]
22. Effect of schwertmannite and jarosite on the formation of hypoxic blackwater during inundation of grass material. Vithana CL; Sullivan LA; Shepherd T Water Res; 2017 Nov; 124():1-10. PubMed ID: 28734957 [TBL] [Abstract][Full Text] [Related]
23. Transformation of cadmium-associated schwertmannite and subsequent element repartitioning behaviors. Fan C; Guo C; Chen M; Huang W; Wan J; Reinfelder JR; Li X; Zeng Y; Lu G; Dang Z Environ Sci Pollut Res Int; 2019 Jan; 26(1):617-627. PubMed ID: 30411291 [TBL] [Abstract][Full Text] [Related]
24. Field rates for natural attenuation of arsenic in Tinto Santa Rosa acid mine drainage (SW Spain). Asta MP; Ayora C; Acero P; Cama J J Hazard Mater; 2010 May; 177(1-3):1102-11. PubMed ID: 20153577 [TBL] [Abstract][Full Text] [Related]
25. Geochemistry and pH control of seepage from Ni-Cu rich mine tailings at Selebi Phikwe, Botswana. Sracek O; Kříbek B; Mihaljevič M; Ettler V; Vaněk A; Penížek V; Filip J; Veselovský F; Bagai ZB Environ Monit Assess; 2018 Jul; 190(8):482. PubMed ID: 30039179 [TBL] [Abstract][Full Text] [Related]
26. Sorption of arsenate(Ⅴ) to naturally occurring secondary iron minerals formed at different conditions: The relationship between sorption behavior and surface structure. Li H; Wang N; Xiao T; Zhang X; Wang J; Tang J; Kong Q; Fu C; Quan H Chemosphere; 2021 Dec; 285():131525. PubMed ID: 34265703 [TBL] [Abstract][Full Text] [Related]
27. A novel arsenic immobilization strategy via a two-step process: Arsenic concentration from dilute solution using schwertmannite and immobilization in Ca-Fe-AsO Park I; Ryota T; Yuto T; Tabelin CB; Phengsaart T; Jeon S; Ito M; Hiroyoshi N J Environ Manage; 2021 Oct; 295():113052. PubMed ID: 34147990 [TBL] [Abstract][Full Text] [Related]
28. Stable iron isotopes and microbial mediation in red pigmentation of the Rosso Ammonitico (mid-late Jurassic, Verona area, Italy). Préat AR; de Jong JT; Mamet BL; Mattielli N Astrobiology; 2008 Aug; 8(4):841-57. PubMed ID: 18759562 [TBL] [Abstract][Full Text] [Related]
29. Antimony and Arsenic Behavior during Fe(II)-Induced Transformation of Jarosite. Karimian N; Johnston SG; Burton ED Environ Sci Technol; 2017 Apr; 51(8):4259-4268. PubMed ID: 28347133 [TBL] [Abstract][Full Text] [Related]
30. Chromium(III) substitution inhibits the Fe(II)-accelerated transformation of schwertmannite. Choppala G; Burton ED PLoS One; 2018; 13(12):e0208355. PubMed ID: 30517205 [TBL] [Abstract][Full Text] [Related]
31. Synthesis and properties of ternary (K, NH₄, H₃O)-jarosites precipitated from Acidithiobacillus ferrooxidans cultures in simulated bioleaching solutions. Jones FS; Bigham JM; Gramp JP; Tuovinen OH Mater Sci Eng C Mater Biol Appl; 2014 Nov; 44():391-9. PubMed ID: 25280720 [TBL] [Abstract][Full Text] [Related]
32. Stability of arsenate-bearing Fe(III)/Al(III) co-precipitates in the presence of sulfide as reducing agent under anoxic conditions. Doerfelt C; Feldmann T; Roy R; Demopoulos GP Chemosphere; 2016 May; 151():318-23. PubMed ID: 26950022 [TBL] [Abstract][Full Text] [Related]
33. Thiocyanate-induced labilization of schwertmannite: Impacts and mechanisms. Fan C; Guo C; Zhang J; Ding C; Li X; Reinfelder JR; Lu G; Shi Z; Dang Z J Environ Sci (China); 2019 Jun; 80():218-228. PubMed ID: 30952339 [TBL] [Abstract][Full Text] [Related]
34. Sulfide-induced repartition of chromium associated with schwertmannite in acid mine drainage: Impacts and mechanisms. Xie Y; Ye H; Wen Z; Dang Z; Lu G Sci Total Environ; 2022 Nov; 848():157863. PubMed ID: 35934033 [TBL] [Abstract][Full Text] [Related]
36. Characteristics and environmental response of secondary minerals in AMD from Dabaoshan Mine, South China. Liu Q; Chen B; Haderlein S; Gopalakrishnan G; Zhou Y Ecotoxicol Environ Saf; 2018 Jul; 155():50-58. PubMed ID: 29501982 [TBL] [Abstract][Full Text] [Related]
37. Arsenic effects and behavior in association with the Fe(II)-catalyzed transformation of schwertmannite. Burton ED; Johnston SG; Watling K; Bush RT; Keene AF; Sullivan LA Environ Sci Technol; 2010 Mar; 44(6):2016-21. PubMed ID: 20148551 [TBL] [Abstract][Full Text] [Related]
38. Immobilization of arsenite and ferric iron by Acidithiobacillus ferrooxidans and its relevance to acid mine drainage. Duquesne K; Lebrun S; Casiot C; Bruneel O; Personné JC; Leblanc M; Elbaz-Poulichet F; Morin G; Bonnefoy V Appl Environ Microbiol; 2003 Oct; 69(10):6165-73. PubMed ID: 14532077 [TBL] [Abstract][Full Text] [Related]
39. Partitioning and transformation behavior of arsenic during Fe(III)-As(III)-As(V)-SO Ma X; Zhang J; Gomez MA; Ding Y; Yao S; Lv H; Wang X; Wang S; Jia Y Sci Total Environ; 2021 Dec; 799():149474. PubMed ID: 34426338 [TBL] [Abstract][Full Text] [Related]
40. Impacts of acid mine drainage on karst aquifers: Evidence from hydrogeochemistry, stable sulfur and oxygen isotopes. Ren K; Zeng J; Liang J; Yuan D; Jiao Y; Peng C; Pan X Sci Total Environ; 2021 Mar; 761():143223. PubMed ID: 33160668 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]