These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 36442490)

  • 1. Autonomous Vesicle/Sheet Transformation of Cell-Sized Lipid Bilayers by Hetero-Grafted Copolymers.
    Masuda T; Takahashi S; Ochiai T; Yamada T; Shimada N; Maruyama A
    ACS Appl Mater Interfaces; 2022 Dec; 14(48):53558-53566. PubMed ID: 36442490
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization and regulation of 2D-3D convertible lipid membrane transformation.
    Zhang W; Uei Y; Matsuura T; Maruyama A
    Biomater Sci; 2024 Jun; 12(13):3423-3430. PubMed ID: 38809312
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cationic Copolymer-Chaperoned 2D-3D Reversible Conversion of Lipid Membranes.
    Shimada N; Kinoshita H; Umegae T; Azumai S; Kume N; Ochiai T; Takenaka T; Sakamoto W; Yamada T; Furuta T; Masuda T; Sakurai M; Higuchi H; Maruyama A
    Adv Mater; 2019 Nov; 31(44):e1904032. PubMed ID: 31550402
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 2D-3D-Convertible, pH-Responsive Lipid Nanosheets.
    Zhang W; Takahashi S; Shimada N; Maruyama A
    Small; 2023 Oct; 19(43):e2301219. PubMed ID: 37376845
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relationship between the structure of amphiphilic copolymers and their ability to disturb lipid bilayers.
    Demina T; Grozdova I; Krylova O; Zhirnov A; Istratov V; Frey H; Kautz H; Melik-Nubarov N
    Biochemistry; 2005 Mar; 44(10):4042-54. PubMed ID: 15751981
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanistic Study of Membrane Disruption by Antimicrobial Methacrylate Random Copolymers by the Single Giant Vesicle Method.
    Tsukamoto M; Zappala E; Caputo GA; Kikuchi JI; Najarian K; Kuroda K; Yasuhara K
    Langmuir; 2021 Aug; 37(33):9982-9995. PubMed ID: 34378943
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling Interactions between Liposomes and Hydrophobic Nanosheets.
    Li Z; Zhang Y; Ma J; Meng Q; Fan J
    Small; 2019 Feb; 15(6):e1804992. PubMed ID: 30589212
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The interplay between surface-functionalized gold nanoparticles and negatively charged lipid vesicles.
    Quan X; Zhao D; Zhou J
    Phys Chem Chem Phys; 2021 Oct; 23(41):23526-23536. PubMed ID: 34642720
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The importance of membrane defects-lessons from simulations.
    Bennett WF; Tieleman DP
    Acc Chem Res; 2014 Aug; 47(8):2244-51. PubMed ID: 24892900
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A thermodynamic study of F108 and F127 block copolymer interactions with liposomes at physiological temperature.
    Solis-Gonzalez OA; Avendaño-Gómez JR; Rojas-Aguilar A
    J Liposome Res; 2022 Mar; 32(1):32-44. PubMed ID: 33322974
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Thermoresponsive Cationic Comb-Type Copolymer Enhances Membrane Disruption Activity of an Amphiphilic Peptide.
    Masuda T; Shimada N; Maruyama A
    Biomacromolecules; 2018 Apr; 19(4):1333-1339. PubMed ID: 29529864
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Malachite green-derivatized cationic comb-type copolymer acts as a photoresponsive artificial chaperone.
    Takemura S; Shimada N; Maruyama A
    J Biomater Sci Polym Ed; 2023 Dec; 34(18):2463-2482. PubMed ID: 37787160
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cationic Copolymers Act As Chaperones of a Membrane-Active Peptide: Influence on Membrane Selectivity.
    Sakamoto W; Masuda T; Ochiai T; Shimada N; Maruyama A
    ACS Biomater Sci Eng; 2019 Nov; 5(11):5744-5751. PubMed ID: 33405707
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polymer-induced flip-flop in biomembranes.
    Yaroslavov AA; Melik-Nubarov NS; Menger FM
    Acc Chem Res; 2006 Oct; 39(10):702-10. PubMed ID: 17042470
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Binding of amphiphilic and triphilic block copolymers to lipid model membranes: the role of perfluorinated moieties.
    Schwieger C; Achilles A; Scholz S; Rüger J; Bacia K; Saalwaechter K; Kressler J; Blume A
    Soft Matter; 2014 Sep; 10(33):6147-60. PubMed ID: 24942348
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Well-defined cholesterol polymers with pH-controlled membrane switching activity.
    Sevimli S; Inci F; Zareie HM; Bulmus V
    Biomacromolecules; 2012 Oct; 13(10):3064-75. PubMed ID: 22917061
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Real-time observation of lipoplex formation and interaction with anionic bilayer vesicles.
    Pantazatos SP; MacDonald RC
    J Membr Biol; 2003 Jan; 191(2):99-112. PubMed ID: 12533777
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancing membrane modulus of giant unilamellar lipid vesicles by lateral co-assembly of amphiphilic triblock copolymers.
    Kang JY; Choi I; Seo M; Lee JY; Hong S; Gong G; Shin SS; Lee Y; Kim JW
    J Colloid Interface Sci; 2020 Mar; 561():318-326. PubMed ID: 31740134
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formation and Characteristics of Lipid-Blended Block Copolymer Bilayers on a Solid Support Investigated by Quartz Crystal Microbalance and Atomic Force Microscopy.
    Mumtaz Virk M; Hofmann B; Reimhult E
    Langmuir; 2019 Jan; 35(3):739-749. PubMed ID: 30580525
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Small-angle X-ray scattering study of the interaction of poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) triblock copolymers with lipid bilayers.
    Firestone MA; Wolf AC; Seifert S
    Biomacromolecules; 2003; 4(6):1539-49. PubMed ID: 14606878
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.