These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 36442732)

  • 1. Modeling the dynamics of cerebrovascular reactivity to carbon dioxide in fMRI under task and resting-state conditions.
    Shams S; Prokopiou P; Esmaelbeigi A; Mitsis GD; Chen JJ
    Neuroimage; 2023 Jan; 265():119758. PubMed ID: 36442732
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A practical modification to a resting state fMRI protocol for improved characterization of cerebrovascular function.
    Stickland RC; Zvolanek KM; Moia S; Ayyagari A; Caballero-Gaudes C; Bright MG
    Neuroimage; 2021 Oct; 239():118306. PubMed ID: 34175427
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative mapping of cerebrovascular reactivity using resting-state BOLD fMRI: Validation in healthy adults.
    Golestani AM; Wei LL; Chen JJ
    Neuroimage; 2016 Sep; 138():147-163. PubMed ID: 27177763
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of baseline CO
    van Niftrik CHB; Piccirelli M; Bozinov O; Maldaner N; Strittmatter C; Pangalu A; Valavanis A; Regli L; Fierstra J
    Magn Reson Imaging; 2018 Jun; 49():123-130. PubMed ID: 29447850
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparing end-tidal CO
    Zvolanek KM; Moia S; Dean JN; Stickland RC; Caballero-Gaudes C; Bright MG
    Neuroimage; 2023 May; 272():120038. PubMed ID: 36958618
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved cerebrovascular reactivity mapping using coherence weighted general linear model in the frequency domain.
    Xu B; Vu C; Borzage M; González-Zacarías C; Shen J; Wood J
    Neuroimage; 2023 Dec; 284():120448. PubMed ID: 37952392
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling of dynamic cerebrovascular reactivity to spontaneous and externally induced CO
    Prokopiou PC; Pattinson KTS; Wise RG; Mitsis GD
    Neuroimage; 2019 Feb; 186():533-548. PubMed ID: 30423427
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cerebrovascular reactivity mapping using intermittent breath modulation.
    Liu P; Xu C; Lin Z; Sur S; Li Y; Yasar S; Rosenberg P; Albert M; Lu H
    Neuroimage; 2020 Jul; 215():116787. PubMed ID: 32278094
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel method of quantifying hemodynamic delays to improve hemodynamic response, and CVR estimates in CO2 challenge fMRI.
    Yao JF; Yang HS; Wang JH; Liang Z; Talavage TM; Tamer GG; Jang I; Tong Y
    J Cereb Blood Flow Metab; 2021 Aug; 41(8):1886-1898. PubMed ID: 33444087
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The association between cerebrovascular reactivity and resting-state fMRI functional connectivity in healthy adults: The influence of basal carbon dioxide.
    Golestani AM; Kwinta JB; Strother SC; Khatamian YB; Chen JJ
    Neuroimage; 2016 May; 132():301-313. PubMed ID: 26908321
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CVR-MRICloud: An online processing tool for CO2-inhalation and resting-state cerebrovascular reactivity (CVR) MRI data.
    Liu P; Baker Z; Li Y; Li Y; Xu J; Park DC; Welch BG; Pinho M; Pillai JJ; Hillis AE; Mori S; Lu H
    PLoS One; 2022; 17(9):e0274220. PubMed ID: 36170233
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cerebrovascular reactivity (CVR) MRI with CO2 challenge: A technical review.
    Liu P; De Vis JB; Lu H
    Neuroimage; 2019 Feb; 187():104-115. PubMed ID: 29574034
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dependence of resting-state-based cerebrovascular reactivity (CVR) mapping on spatial resolution.
    Liu P; Hu B; Kartchner L; Joshi P; Xu C; Jiang D
    Front Neuroimaging; 2023; 2():1205459. PubMed ID: 37554643
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The voxel-wise analysis of false negative fMRI activation in regions of provoked impaired cerebrovascular reactivity.
    van Niftrik CHB; Piccirelli M; Muscas G; Sebök M; Fisher JA; Bozinov O; Stippich C; Valavanis A; Regli L; Fierstra J
    PLoS One; 2019; 14(5):e0215294. PubMed ID: 31059517
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of cerebrovascular reserve in patients with cerebrovascular diseases using resting-state MRI: A feasibility study.
    Taneja K; Lu H; Welch BG; Thomas BP; Pinho M; Lin D; Hillis AE; Liu P
    Magn Reson Imaging; 2019 Jun; 59():46-52. PubMed ID: 30849484
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cerebrovascular reactivity mapping without gas challenges.
    Liu P; Li Y; Pinho M; Park DC; Welch BG; Lu H
    Neuroimage; 2017 Feb; 146():320-326. PubMed ID: 27888058
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reliable quantification of BOLD fMRI cerebrovascular reactivity despite poor breath-hold performance.
    Bright MG; Murphy K
    Neuroimage; 2013 Dec; 83():559-68. PubMed ID: 23845426
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The association between BOLD-based cerebrovascular reactivity (CVR) and end-tidal CO
    Hou X; Liu P; Li Y; Jiang D; De Vis JB; Lin Z; Sur S; Baker Z; Mao D; Ravi H; Rodrigue K; Albert M; Park DC; Lu H
    Neuroimage; 2020 Feb; 207():116365. PubMed ID: 31734432
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Voxelwise optimization of hemodynamic lags to improve regional CVR estimates in breath-hold fMRI.
    Moia S; Stickland RC; Ayyagari A; Termenon M; Caballero-Gaudes C; Bright MG
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():1489-1492. PubMed ID: 33018273
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Role of Cerebrovascular-Reactivity Mapping in Functional MRI: Calibrated fMRI and Resting-State fMRI.
    Chen JJ; Gauthier CJ
    Front Physiol; 2021; 12():657362. PubMed ID: 33841190
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.