BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 36443035)

  • 1. [Bioinformatics Analysis of Hub Genes of Diabetic Foot Ulcer and Their Biofunctions].
    Xu F; Rui SL; Luo PQ; Chen Y; Ma Y; Deng WQ
    Sichuan Da Xue Xue Bao Yi Xue Ban; 2022 Nov; 53(6):961-968. PubMed ID: 36443035
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Screening, functional analysis and clinical validation of differentially expressed genes in diabetic foot ulcers].
    Wang P; Chen ZH; Jiang LY; Zhou XQ; Jia CY; Xiao HA
    Zhonghua Shao Shang Yu Chuang Mian Xiu Fu Za Zhi; 2022 Oct; 38(10):944-951. PubMed ID: 36299206
    [No Abstract]   [Full Text] [Related]  

  • 3. Identification of hub genes and pathways associated with cellular senescence in diabetic foot ulcers via comprehensive transcriptome analysis.
    Huang Y; Wang D; Zhang W; Yuan X; Li K; Zhang Y; Zeng M
    J Cell Mol Med; 2024 Jan; 28(1):e18043. PubMed ID: 37985432
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Data mining reveal the association between diabetic foot ulcer and peripheral artery disease.
    Zou J; Zhang W; Chen X; Su W; Yu D
    Front Public Health; 2022; 10():963426. PubMed ID: 36062083
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel diabetic foot ulcer diagnostic model: identification and analysis of genes related to glutamine metabolism and immune infiltration.
    Shi H; Yuan X; Yang X; Huang R; Fan W; Liu G
    BMC Genomics; 2024 Jan; 25(1):125. PubMed ID: 38287255
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of potential diagnostic biomarkers and immune infiltration features in diabetic foot ulcer by bioinformatics analysis and validation.
    Li X; Chen B; Xu Y; Zhou A; Wu B
    Cell Mol Biol (Noisy-le-grand); 2023 Nov; 69(11):180-188. PubMed ID: 38015522
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Growth differentiation factor 10 induces angiogenesis to promote wound healing in rats with diabetic foot ulcers by activating TGF-β1/Smad3 signaling pathway.
    Zhao Q; Xu J; Han X; Zhang Z; Qu J; Cheng Z
    Front Endocrinol (Lausanne); 2022; 13():1013018. PubMed ID: 36714584
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrated Bioinformatics-Based Identification of Potential Diagnostic Biomarkers Associated with Diabetic Foot Ulcer Development.
    Qian L; Xia Z; Zhang M; Han Q; Hu D; Qi S; Xing D; Chen Y; Zhao X
    J Diabetes Res; 2021; 2021():5445349. PubMed ID: 34513999
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioinformatics analysis of differentially expressed genes in diabetic foot ulcer and preliminary experimental verification.
    Miao F; Li X; Wang C; Yuan H; Wu Z
    Ann Transl Med; 2023 Jan; 11(2):89. PubMed ID: 36819522
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploring shared therapeutic targets in diabetic cardiomyopathy and diabetic foot ulcers through bioinformatics analysis.
    Wu H; Yang Z; Wang J; Bu Y; Wang Y; Xu K; Li J; Yan C; Liu D; Han Y
    Sci Rep; 2024 Jan; 14(1):230. PubMed ID: 38168477
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrated analysis of circRNA-miRNA-mRNA regulatory network identifies potential diagnostic biomarkers in diabetic foot ulcer.
    Liao S; Lin X; Mo C
    Noncoding RNA Res; 2020 Sep; 5(3):116-124. PubMed ID: 32913938
    [TBL] [Abstract][Full Text] [Related]  

  • 12. IL-1B can serve as a healing process and is a critical regulator of diabetic foot ulcer.
    Gan MS; Yang B; Fang DL; Wu BL
    Ann Transl Med; 2022 Feb; 10(4):179. PubMed ID: 35280410
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of angiogenesis-related genes in diabetic foot ulcer using machine learning algorithms.
    Wang X; Meng L; Zhang J; Zou L; Jia Z; Han X; Zhao L; Song M; Zhang Z; Zong J; Wang S; Lu M
    Heliyon; 2023 Dec; 9(12):e23003. PubMed ID: 38076120
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Biomarkers associated with severity classification of asthma identified by comprehensive bioinformatics analysis].
    Xiao ZM; Yan X; Li F; Xiao KW; Liu GH
    Zhonghua Yu Fang Yi Xue Za Zhi; 2023 Sep; 57(9):1458-1468. PubMed ID: 37743309
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identifying C1QB, ITGAM, and ITGB2 as potential diagnostic candidate genes for diabetic nephropathy using bioinformatics analysis.
    Hu Y; Yu Y; Dong H; Jiang W
    PeerJ; 2023; 11():e15437. PubMed ID: 37250717
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Bioinformatics Analysis of Core Genes and Key Pathways in Myelodysplastic Syndrome].
    Wang Y; Wang YS; Hu NB; Teng GS; Zhou Y; Bai J
    Zhongguo Shi Yan Xue Ye Xue Za Zhi; 2022 Jun; 30(3):804-812. PubMed ID: 35680809
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioinformatics Analysis of the Mechanisms of Diabetic Nephropathy
    Guo M; Dai Y; Jiang L; Gao J
    Front Endocrinol (Lausanne); 2022; 13():934022. PubMed ID: 35909518
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploration of the pathogenesis of Sjögren's syndrome via DNA methylation and transcriptome analyses.
    Du Y; Li J; Wu J; Zeng F; He C
    Clin Rheumatol; 2022 Sep; 41(9):2765-2777. PubMed ID: 35562622
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrative analyses of biomarkers and pathways for diabetic nephropathy.
    Li B; Zhao X; Xie W; Hong Z; Zhang Y
    Front Genet; 2023; 14():1128136. PubMed ID: 37113991
    [No Abstract]   [Full Text] [Related]  

  • 20. Revealing immune infiltrate characteristics and potential immune-related genes in hepatic fibrosis: based on bioinformatics, transcriptomics and q-PCR experiments.
    Bai YM; Liang S; Zhou B
    Front Immunol; 2023; 14():1133543. PubMed ID: 37122694
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.