These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 36443314)

  • 1. SOTIP is a versatile method for microenvironment modeling with spatial omics data.
    Yuan Z; Li Y; Shi M; Yang F; Gao J; Yao J; Zhang MQ
    Nat Commun; 2022 Nov; 13(1):7330. PubMed ID: 36443314
    [TBL] [Abstract][Full Text] [Related]  

  • 2. BANKSY unifies cell typing and tissue domain segmentation for scalable spatial omics data analysis.
    Singhal V; Chou N; Lee J; Yue Y; Liu J; Chock WK; Lin L; Chang YC; Teo EML; Aow J; Lee HK; Chen KH; Prabhakar S
    Nat Genet; 2024 Mar; 56(3):431-441. PubMed ID: 38413725
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Progress in research on tumor microenvironment-based spatial omics technologies.
    Xie F; Xi N; Han Z; Luo W; Shen J; Luo J; Tang X; Pang T; Lv Y; Liang J; Liao L; Zhang H; Jiang Y; Li Y; He J
    Oncol Res; 2023; 31(6):877-885. PubMed ID: 37744276
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Omics-Based Investigations of Breast Cancer.
    Neagu AN; Whitham D; Bruno P; Morrissiey H; Darie CA; Darie CC
    Molecules; 2023 Jun; 28(12):. PubMed ID: 37375323
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SIMVI reveals intrinsic and spatial-induced states in spatial omics data.
    Dong M; Kluger H; Fan R; Kluger Y
    bioRxiv; 2023 Aug; ():. PubMed ID: 37693629
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Graph deep learning for the characterization of tumour microenvironments from spatial protein profiles in tissue specimens.
    Wu Z; Trevino AE; Wu E; Swanson K; Kim HJ; D'Angio HB; Preska R; Charville GW; Dalerba PD; Egloff AM; Uppaluri R; Duvvuri U; Mayer AT; Zou J
    Nat Biomed Eng; 2022 Dec; 6(12):1435-1448. PubMed ID: 36357512
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-omics single-cell data integration and regulatory inference with graph-linked embedding.
    Cao ZJ; Gao G
    Nat Biotechnol; 2022 Oct; 40(10):1458-1466. PubMed ID: 35501393
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Local augmented graph neural network for multi-omics cancer prognosis prediction and analysis.
    Zhang Y; Xiong S; Wang Z; Liu Y; Luo H; Li B; Zou Q
    Methods; 2023 May; 213():1-9. PubMed ID: 36933628
    [TBL] [Abstract][Full Text] [Related]  

  • 9. FGCNSurv: dually fused graph convolutional network for multi-omics survival prediction.
    Wen G; Li L
    Bioinformatics; 2023 Aug; 39(8):. PubMed ID: 37522887
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatial multi-omics analyses of the tumor immune microenvironment.
    Hsieh WC; Budiarto BR; Wang YF; Lin CY; Gwo MC; So DK; Tzeng YS; Chen SY
    J Biomed Sci; 2022 Nov; 29(1):96. PubMed ID: 36376874
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heterogeneity of triple negative breast cancer: Current advances in subtyping and treatment implications.
    Asleh K; Riaz N; Nielsen TO
    J Exp Clin Cancer Res; 2022 Sep; 41(1):265. PubMed ID: 36050786
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Smoother: a unified and modular framework for incorporating structural dependency in spatial omics data.
    Su J; Reynier JB; Fu X; Zhong G; Jiang J; Escalante RS; Wang Y; Aparicio L; Izar B; Knowles DA; Rabadan R
    Genome Biol; 2023 Dec; 24(1):291. PubMed ID: 38110959
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MoGCN: A Multi-Omics Integration Method Based on Graph Convolutional Network for Cancer Subtype Analysis.
    Li X; Ma J; Leng L; Han M; Li M; He F; Zhu Y
    Front Genet; 2022; 13():806842. PubMed ID: 35186034
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cross-domain information fusion for enhanced cell population delineation in single-cell spatial-omics data.
    Zhu B; Gao S; Chen S; Yeung J; Bai Y; Huang AY; Yeo YY; Liao G; Mao S; Jiang ZG; Rodig SJ; Shalek AK; Nolan GP; Jiang S; Ma Z
    bioRxiv; 2024 May; ():. PubMed ID: 38798592
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single-cell omics traces the heterogeneity of prostate cancer cells and the tumor microenvironment.
    Yu X; Liu R; Gao W; Wang X; Zhang Y
    Cell Mol Biol Lett; 2023 May; 28(1):38. PubMed ID: 37161356
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep latent space fusion for adaptive representation of heterogeneous multi-omics data.
    Zhang C; Chen Y; Zeng T; Zhang C; Chen L
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35079777
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidic single-cell transcriptomics: moving towards multimodal and spatiotemporal omics.
    Lin S; Liu Y; Zhang M; Xu X; Chen Y; Zhang H; Yang C
    Lab Chip; 2021 Oct; 21(20):3829-3849. PubMed ID: 34541590
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aquila: a spatial omics database and analysis platform.
    Zheng Y; Chen Y; Ding X; Wong KH; Cheung E
    Nucleic Acids Res; 2023 Jan; 51(D1):D827-D834. PubMed ID: 36243967
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Revealing spatial multimodal heterogeneity in tissues with SpaTrio.
    Yang P; Jin L; Liao J; Jin K; Shao X; Li C; Qian J; Cheng J; Yu D; Guo R; Xu X; Lu X; Fan X
    Cell Genom; 2023 Dec; 3(12):100446. PubMed ID: 38116121
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Graph Neural Networks With Multiple Prior Knowledge for Multi-Omics Data Analysis.
    Xiao S; Lin H; Wang C; Wang S; Rajapakse JC
    IEEE J Biomed Health Inform; 2023 Sep; 27(9):4591-4600. PubMed ID: 37307177
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.