These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 36443324)
21. Sound absorption theory for micro-perforated panel with petal-shaped perforations. Xu Z; He W; Peng X; Xin F; Lu TJ J Acoust Soc Am; 2020 Jul; 148(1):18. PubMed ID: 32752730 [TBL] [Abstract][Full Text] [Related]
22. The effect of large amplitude vibration on the pressure-dependent absorption of a structure multiple cavity system. Lee YY PLoS One; 2019; 14(7):e0219257. PubMed ID: 31287827 [TBL] [Abstract][Full Text] [Related]
23. Tunable Broadband Terahertz Waveband Absorbers Based on Fractal Technology of Graphene Metamaterial. Xie T; Chen D; Yang H; Xu Y; Zhang Z; Yang J Nanomaterials (Basel); 2021 Jan; 11(2):. PubMed ID: 33498504 [TBL] [Abstract][Full Text] [Related]
24. In-depth investigations into symmetrical labyrinthine acoustic metamaterial with two micro-slit entries for low-frequency sound absorption. Pavan G; Singh S J Acoust Soc Am; 2024 Jan; 155(1):496-510. PubMed ID: 38251978 [TBL] [Abstract][Full Text] [Related]
25. Development and Optimization of Broadband Acoustic Metamaterial Absorber Based on Parallel-Connection Square Helmholtz Resonators. Wang E; Yang F; Shen X; Duan H; Zhang X; Yin Q; Peng W; Yang X; Yang L Materials (Basel); 2022 May; 15(10):. PubMed ID: 35629445 [TBL] [Abstract][Full Text] [Related]
26. Development of Adjustable Parallel Helmholtz Acoustic Metamaterial for Broad Low-Frequency Sound Absorption Band. Yang X; Yang F; Shen X; Wang E; Zhang X; Shen C; Peng W Materials (Basel); 2022 Aug; 15(17):. PubMed ID: 36079319 [TBL] [Abstract][Full Text] [Related]
27. The acoustic performances of a subwavelength hierarchical honeycomb structure: Analytical, numerical, and experimental investigations. Chen W; Lu C; Wang X; Liu S J Acoust Soc Am; 2023 Mar; 153(3):1754. PubMed ID: 37002108 [TBL] [Abstract][Full Text] [Related]
28. Effects of Aperture Shape on Absorption Property of Acoustic Metamaterial of Parallel-Connection Helmholtz Resonator. Bi S; Yang F; Tang S; Shen X; Zhang X; Zhu J; Yang X; Peng W; Yuan F Materials (Basel); 2023 Feb; 16(4):. PubMed ID: 36837229 [TBL] [Abstract][Full Text] [Related]
29. Revisiting the sound absorption mechanisms of a finite flexible perforated panel absorber using a numerical approach. Li J; Zhao P; Wang P; Yang C J Acoust Soc Am; 2024 Oct; 156(4):2566-2577. PubMed ID: 39404358 [TBL] [Abstract][Full Text] [Related]
30. Sound absorption performance of a conch-imitating cavity structure. Xie S; Yang S; Yan H; Li Z Sci Prog; 2022; 105(1):368504221075167. PubMed ID: 35102795 [TBL] [Abstract][Full Text] [Related]
32. Ultra-Thin and Broadband P-Band Metamaterial Absorber Based on Carbonyl Iron Powder Composites. Zhou M; Chen Y; He Y; Yang C Materials (Basel); 2024 Mar; 17(5):. PubMed ID: 38473629 [TBL] [Abstract][Full Text] [Related]
33. An extra-broadband compact sound-absorbing structure composing of double-layer resonator with multiple perforations. Guo J; Fang Y; Qu R; Liu Q; Zhang X J Acoust Soc Am; 2021 Aug; 150(2):1370. PubMed ID: 34470319 [TBL] [Abstract][Full Text] [Related]
34. Progress of low-frequency sound absorption research utilizing intelligent materials and acoustic metamaterials. Chang L; Jiang A; Rao M; Ma F; Huang H; Zhu Z; Zhang Y; Wu Y; Li B; Hu Y RSC Adv; 2021 Nov; 11(60):37784-37800. PubMed ID: 35498066 [TBL] [Abstract][Full Text] [Related]
35. A broadband active sound absorber with adjustable absorption coefficient and bandwidth. Wang K; Shi L; Zou H; Zhao S; Shen C; Lu J J Acoust Soc Am; 2024 Aug; 156(2):1048-1057. PubMed ID: 39136634 [TBL] [Abstract][Full Text] [Related]
36. Innovative solution to enhance the Helmholtz resonator sound absorber in low-frequency noise by nature inspiration. Basirjafari S J Environ Health Sci Eng; 2020 Dec; 18(2):873-882. PubMed ID: 33312609 [TBL] [Abstract][Full Text] [Related]
37. Harnessing cavity dissipation for enhanced sound absorption in Helmholtz resonance metamaterials. Li X; Yu X; Chua JW; Zhai W Mater Horiz; 2023 Jul; 10(8):2892-2903. PubMed ID: 37183606 [TBL] [Abstract][Full Text] [Related]
38. Thermoviscous-acoustic metamaterials to damp acoustic modes in complex shape geometries at low frequencies. Kone TC; Lopez M; Ghinet S; Dupont T; Panneton R J Acoust Soc Am; 2021 Sep; 150(3):2272. PubMed ID: 34598627 [TBL] [Abstract][Full Text] [Related]
39. Moth wings are acoustic metamaterials. Neil TR; Shen Z; Robert D; Drinkwater BW; Holderied MW Proc Natl Acad Sci U S A; 2020 Dec; 117(49):31134-31141. PubMed ID: 33229524 [TBL] [Abstract][Full Text] [Related]
40. Thin broadband noise absorption through acoustic reactance control by electro-mechanical coupling without sensor. Zhang Y; Chan YJ; Huang L J Acoust Soc Am; 2014 May; 135(5):2738-45. PubMed ID: 24815257 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]