These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 36443357)

  • 1. Hybrid classical-quantum machine learning based on dissipative two-qubit channels.
    Ghasemian E; Tavassoly MK
    Sci Rep; 2022 Nov; 12(1):20440. PubMed ID: 36443357
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Realization of efficient quantum gates with a superconducting qubit-qutrit circuit.
    Bækkegaard T; Kristensen LB; Loft NJS; Andersen CK; Petrosyan D; Zinner NT
    Sci Rep; 2019 Sep; 9(1):13389. PubMed ID: 31527726
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Demonstration of two-qubit algorithms with a superconducting quantum processor.
    DiCarlo L; Chow JM; Gambetta JM; Bishop LS; Johnson BR; Schuster DI; Majer J; Blais A; Frunzio L; Girvin SM; Schoelkopf RJ
    Nature; 2009 Jul; 460(7252):240-4. PubMed ID: 19561592
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dissipative production of a maximally entangled steady state of two quantum bits.
    Lin Y; Gaebler JP; Reiter F; Tan TR; Bowler R; Sørensen AS; Leibfried D; Wineland DJ
    Nature; 2013 Dec; 504(7480):415-8. PubMed ID: 24270806
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dissipative preparation of distributed steady entanglement: an approach of unilateral qubit driving.
    Jin Z; Su SL; Zhu AD; Wang HF; Zhang S
    Opt Express; 2017 Jan; 25(1):88-101. PubMed ID: 28085813
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-adiabatic holonomic quantum computation in linear system-bath coupling.
    Sun C; Wang G; Wu C; Liu H; Feng XL; Chen JL; Xue K
    Sci Rep; 2016 Feb; 6():20292. PubMed ID: 26846444
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Autonomously stabilized entanglement between two superconducting quantum bits.
    Shankar S; Hatridge M; Leghtas Z; Sliwa KM; Narla A; Vool U; Girvin SM; Frunzio L; Mirrahimi M; Devoret MH
    Nature; 2013 Dec; 504(7480):419-22. PubMed ID: 24270808
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Universal quantum gate with hybrid qubits in circuit quantum electrodynamics.
    Yang CP; Zheng ZF; Zhang Y
    Opt Lett; 2018 Dec; 43(23):5765-5768. PubMed ID: 30499988
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation and measurement of three-qubit entanglement in a superconducting circuit.
    Dicarlo L; Reed MD; Sun L; Johnson BR; Chow JM; Gambetta JM; Frunzio L; Girvin SM; Devoret MH; Schoelkopf RJ
    Nature; 2010 Sep; 467(7315):574-8. PubMed ID: 20882013
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Multi-Classification Hybrid Quantum Neural Network Using an All-Qubit Multi-Observable Measurement Strategy.
    Zeng Y; Wang H; He J; Huang Q; Chang S
    Entropy (Basel); 2022 Mar; 24(3):. PubMed ID: 35327905
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Universal quantum computation with the exchange interaction.
    DiVincenzo DP; Bacon D; Kempe J; Burkard G; Whaley KB
    Nature; 2000 Nov; 408(6810):339-42. PubMed ID: 11099036
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Digital System Design for Quantum Error Correction Codes.
    Khalifa OO; Amirah Bt Sharif N; Saeed RA; Abdel-Khalek S; Alharbi AN; Alkathiri AA
    Contrast Media Mol Imaging; 2021; 2021():1101911. PubMed ID: 34992507
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantum Theory of the Classical: Einselection, Envariance, Quantum Darwinism and Extantons.
    Zurek WH
    Entropy (Basel); 2022 Oct; 24(11):. PubMed ID: 36359613
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generation of steady entanglement via unilateral qubit driving in bad cavities.
    Jin Z; Su SL; Zhu AD; Wang HF; Shen LT; Zhang S
    Sci Rep; 2017 Dec; 7(1):17648. PubMed ID: 29247250
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental one-way quantum computing.
    Walther P; Resch KJ; Rudolph T; Schenck E; Weinfurter H; Vedral V; Aspelmeyer M; Zeilinger A
    Nature; 2005 Mar; 434(7030):169-76. PubMed ID: 15758991
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental demonstration of high fidelity entanglement distribution over decoherence channels via qubit transduction.
    Lim HT; Hong KH; Kim YH
    Sci Rep; 2015 Oct; 5():15384. PubMed ID: 26487083
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tunneling, decoherence, and entanglement of two spins interacting with a dissipative bath.
    Sahrapour MM; Makri N
    J Chem Phys; 2013 Mar; 138(11):114109. PubMed ID: 23534629
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deterministic quantum state transfer and remote entanglement using microwave photons.
    Kurpiers P; Magnard P; Walter T; Royer B; Pechal M; Heinsoo J; Salathé Y; Akin A; Storz S; Besse JC; Gasparinetti S; Blais A; Wallraff A
    Nature; 2018 Jun; 558(7709):264-267. PubMed ID: 29899478
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Decoherence-protected quantum gates for a hybrid solid-state spin register.
    van der Sar T; Wang ZH; Blok MS; Bernien H; Taminiau TH; Toyli DM; Lidar DA; Awschalom DD; Hanson R; Dobrovitski VV
    Nature; 2012 Apr; 484(7392):82-6. PubMed ID: 22481361
    [TBL] [Abstract][Full Text] [Related]  

  • 20. One-step implementation of a hybrid Fredkin gate with quantum memories and single superconducting qubit in circuit QED and its applications.
    Liu T; Guo BQ; Yu CS; Zhang WN
    Opt Express; 2018 Feb; 26(4):4498-4511. PubMed ID: 29475300
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.