These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 36443374)
1. An efficient estimation of crop performance in sheep fescue (Festuca ovina L.) using artificial neural network and regression models. Khalaki MA; Jahantab E; Abdipour M; Moameri M; Ghorbani A Sci Rep; 2022 Nov; 12(1):20514. PubMed ID: 36443374 [TBL] [Abstract][Full Text] [Related]
2. Author Correction: An efficient estimation of crop performance in sheep fescue (Festuca ovina L.) using artificial neural network and regression models. Khalaki MA; Jahantab E; Abdipour M; Moameri M; Ghorbani A Sci Rep; 2023 Mar; 13(1):3613. PubMed ID: 36869091 [No Abstract] [Full Text] [Related]
3. Artificial neural network approach for predicting the sesame ( da Silva Ribeiro JE; Dos Santos Coêlho E; de Oliveira AKS; Correia da Silva AG; de Araújo Rangel Lopes W; de Almeida Oliveira PH; Freire da Silva E; Barros Júnior AP; Maria da Silveira L Heliyon; 2023 Jul; 9(7):e17834. PubMed ID: 37501953 [TBL] [Abstract][Full Text] [Related]
4. Prediction of irrigation groundwater quality parameters using ANN, LSTM, and MLR models. Kouadri S; Pande CB; Panneerselvam B; Moharir KN; Elbeltagi A Environ Sci Pollut Res Int; 2022 Mar; 29(14):21067-21091. PubMed ID: 34748181 [TBL] [Abstract][Full Text] [Related]
5. Evaluation of crop water stress index of wheat by using machine learning models. Yadav A; Narakala LM; Upreti H; Das Singhal G Environ Monit Assess; 2024 Sep; 196(10):970. PubMed ID: 39312101 [TBL] [Abstract][Full Text] [Related]
6. Estimation of milk yield based on udder measures of Pelibuey sheep using artificial neural networks. Angeles-Hernandez JC; Castro-Espinoza FA; Peláez-Acero A; Salinas-Martinez JA; Chay-Canul AJ; Vargas-Bello-Pérez E Sci Rep; 2022 May; 12(1):9009. PubMed ID: 35637273 [TBL] [Abstract][Full Text] [Related]
7. Development and comparative analysis of ANN and SVR-based models with conventional regression models for predicting spray drift. Moges G; McDonnell K; Delele MA; Ali AN; Fanta SW Environ Sci Pollut Res Int; 2023 Feb; 30(8):21927-21944. PubMed ID: 36280637 [TBL] [Abstract][Full Text] [Related]
8. A Neural Network-Based Model for Predicting Saybolt Color of Petroleum Products. Salehuddin NF; Omar MB; Ibrahim R; Bingi K Sensors (Basel); 2022 Apr; 22(7):. PubMed ID: 35408409 [TBL] [Abstract][Full Text] [Related]
9. Application of classical and novel integrated machine learning models to predict sediment discharge during free-flow flushing. Javadi F; Qaderi K; Ahmadi MM; Rahimpour M; Madadi MR; Mahdavi-Meymand A Sci Rep; 2022 Nov; 12(1):19390. PubMed ID: 36371476 [TBL] [Abstract][Full Text] [Related]
10. Hybridizing five neural-metaheuristic paradigms to predict the pillar stress in bord and pillar method. Zhou J; Chen Y; Chen H; Khandelwal M; Monjezi M; Peng K Front Public Health; 2023; 11():1119580. PubMed ID: 36761136 [TBL] [Abstract][Full Text] [Related]
11. Evaluating advanced computing techniques for predicting breeding values in Harnali sheep. Bangar YC; Magotra A; Malik BS; Malik ZS; Yadav AS Trop Anim Health Prod; 2021 May; 53(2):313. PubMed ID: 33966158 [TBL] [Abstract][Full Text] [Related]
12. Genetic Structure and Eco-Geographical Differentiation of Wild Sheep Fescue (Festuca ovina L.) in Xinjiang, Northwest China. Zhang C; Zhang J; Fan Y; Sun M; Wu W; Zhao W; Yang X; Huang L; Peng Y; Ma X; Zhang X Molecules; 2017 Aug; 22(8):. PubMed ID: 28792456 [TBL] [Abstract][Full Text] [Related]
13. Prediction of mustard yield using different machine learning techniques: a case study of Rajasthan, India. Vashisth A; Goyal A Int J Biometeorol; 2023 Mar; 67(3):539-551. PubMed ID: 36717403 [TBL] [Abstract][Full Text] [Related]
14. Application of machine learning algorithms and feature selection in rapeseed (Brassica napus L.) breeding for seed yield. Shahsavari M; Mohammadi V; Alizadeh B; Alizadeh H Plant Methods; 2023 Jun; 19(1):57. PubMed ID: 37328913 [TBL] [Abstract][Full Text] [Related]
15. Machine learning models to predict the delivered positions of Elekta multileaf collimator leaves for volumetric modulated arc therapy. Sivabhaskar S; Li R; Roy A; Kirby N; Fakhreddine M; Papanikolaou N J Appl Clin Med Phys; 2022 Aug; 23(8):e13667. PubMed ID: 35670318 [TBL] [Abstract][Full Text] [Related]
16. Predicting coagulation-flocculation process for turbidity removal from water using graphene oxide: a comparative study on ANN, SVR, ANFIS, and RSM models. Ghasemi M; Hasani Zonoozi M; Rezania N; Saadatpour M Environ Sci Pollut Res Int; 2022 Oct; 29(48):72839-72852. PubMed ID: 35616836 [TBL] [Abstract][Full Text] [Related]
17. Cefixime removal via WO Sheikhmohammadi A; Alamgholiloo H; Golaki M; Khakzad P; Asgari E; Rahimlu F Sci Rep; 2024 Jun; 14(1):13840. PubMed ID: 38879660 [TBL] [Abstract][Full Text] [Related]
18. Assessing the impacts of climate change on streamflow dynamics: A machine learning perspective. Khan M; Khan AU; Khan S; Khan FA Water Sci Technol; 2023 Nov; 88(9):2309-2331. PubMed ID: 37966185 [TBL] [Abstract][Full Text] [Related]
19. Estimation of the Mixed Layer Depth in the Indian Ocean from Surface Parameters: A Clustering-Neural Network Method. Gu C; Qi J; Zhao Y; Yin W; Zhu S Sensors (Basel); 2022 Jul; 22(15):. PubMed ID: 35898102 [TBL] [Abstract][Full Text] [Related]
20. Development of Artificial Neural Network for prediction of radon dispersion released from Sinquyen Mine, Vietnam. Duong VH; Ly HB; Trinh DH; Nguyen TS; Pham BT Environ Pollut; 2021 Aug; 282():116973. PubMed ID: 33845312 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]