These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 36443374)

  • 21. Comparison of machine learning algorithms and multiple linear regression for live weight estimation of Akkaraman lambs.
    Kozaklı Ö; Ceyhan A; Noyan M
    Trop Anim Health Prod; 2024 Sep; 56(7):250. PubMed ID: 39225879
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Association Analysis of Simple Sequence Repeat (SSR) Markers with Agronomic Traits in Tall Fescue (Festuca arundinacea Schreb.).
    Lou Y; Hu L; Chen L; Sun X; Yang Y; Liu H; Xu Q
    PLoS One; 2015; 10(7):e0133054. PubMed ID: 26186338
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Using machine learning models to predict the effects of seasonal fluxes on Plesiomonas shigelloides population density.
    Ekundayo TC; Ijabadeniyi OA; Igbinosa EO; Okoh AI
    Environ Pollut; 2023 Jan; 317():120734. PubMed ID: 36455774
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Image-based phenotyping of seed architectural traits and prediction of seed weight using machine learning models in soybean.
    Duc NT; Ramlal A; Rajendran A; Raju D; Lal SK; Kumar S; Sahoo RN; Chinnusamy V
    Front Plant Sci; 2023; 14():1206357. PubMed ID: 37771485
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparing artificial neural network training algorithms to predict length of stay in hospitalized patients with COVID-19.
    Orooji A; Shanbehzadeh M; Mirbagheri E; Kazemi-Arpanahi H
    BMC Infect Dis; 2022 Dec; 22(1):923. PubMed ID: 36494613
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Application of Machine Learning Algorithms to Describe the Characteristics of Dairy Sheep Lactation Curves.
    Guevara L; Castro-Espinoza F; Fernandes AM; Benaouda M; Muñoz-Benítez AL; Del Razo-Rodríguez OE; Peláez-Acero A; Angeles-Hernandez JC
    Animals (Basel); 2023 Aug; 13(17):. PubMed ID: 37685036
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Monitoring rice nitrogen status using hyperspectral reflectance and artificial neural network.
    Yi QX; Huang JF; Wang FM; Wang XZ; Liu ZY
    Environ Sci Technol; 2007 Oct; 41(19):6770-5. PubMed ID: 17969693
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Application of machine learning and its improvement technology in modeling of total energy consumption of air conditioning water system.
    Zhu Q; Liu M; Liu H; Zhu Y
    Math Biosci Eng; 2022 Mar; 19(5):4841-4855. PubMed ID: 35430843
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparative Analysis of Major Machine-Learning-Based Path Loss Models for Enclosed Indoor Channels.
    Elmezughi MK; Salih O; Afullo TJ; Duffy KJ
    Sensors (Basel); 2022 Jun; 22(13):. PubMed ID: 35808457
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Performance evaluation of artificial intelligence paradigms-artificial neural networks, fuzzy logic, and adaptive neuro-fuzzy inference system for flood prediction.
    Tabbussum R; Dar AQ
    Environ Sci Pollut Res Int; 2021 May; 28(20):25265-25282. PubMed ID: 33453033
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Suspended sediment load prediction using artificial neural network and ant lion optimization algorithm.
    Banadkooki FB; Ehteram M; Ahmed AN; Teo FY; Ebrahimi M; Fai CM; Huang YF; El-Shafie A
    Environ Sci Pollut Res Int; 2020 Oct; 27(30):38094-38116. PubMed ID: 32621196
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Waste-to-energy as a tool of circular economy: Prediction of higher heating value of biomass by artificial neural network (ANN) and multivariate linear regression (MLR).
    Ezzahra Yatim F; Boumanchar I; Srhir B; Chhiti Y; Jama C; Ezzahrae M'hamdi Alaoui F
    Waste Manag; 2022 Nov; 153():293-303. PubMed ID: 36174430
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Novel combination artificial neural network models could not outperform individual models for weather-based cashew yield prediction.
    Das B; Murgaonkar D; Navyashree S; Kumar P
    Int J Biometeorol; 2022 Aug; 66(8):1627-1638. PubMed ID: 35641796
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Time series prediction of under-five mortality rates for Nigeria: comparative analysis of artificial neural networks, Holt-Winters exponential smoothing and autoregressive integrated moving average models.
    Adeyinka DA; Muhajarine N
    BMC Med Res Methodol; 2020 Dec; 20(1):292. PubMed ID: 33267817
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evaluation of multiple linear, neural network and penalised regression models for prediction of rice yield based on weather parameters for west coast of India.
    Das B; Nair B; Reddy VK; Venkatesh P
    Int J Biometeorol; 2018 Oct; 62(10):1809-1822. PubMed ID: 30043218
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparative study of artificial neural network (ANN), adaptive neuro-fuzzy inference system (ANFIS) and multiple linear regression (MLR) for modeling of Cu (II) adsorption from aqueous solution using biochar derived from rambutan (Nephelium lappaceum) peel.
    Wong YJ; Arumugasamy SK; Chung CH; Selvarajoo A; Sethu V
    Environ Monit Assess; 2020 Jun; 192(7):439. PubMed ID: 32556670
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Estimation of daily dissolved oxygen concentration for river water quality using conventional regression analysis, multivariate adaptive regression splines, and TreeNet techniques.
    Nacar S; Mete B; Bayram A
    Environ Monit Assess; 2020 Nov; 192(12):752. PubMed ID: 33159587
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Predicting methane emission in Canadian Holstein dairy cattle using milk mid-infrared reflectance spectroscopy and other commonly available predictors via artificial neural networks.
    Shadpour S; Chud TCS; Hailemariam D; Plastow G; Oliveira HR; Stothard P; Lassen J; Miglior F; Baes CF; Tulpan D; Schenkel FS
    J Dairy Sci; 2022 Oct; 105(10):8272-8285. PubMed ID: 36055858
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hyperspectral Monitoring of Powdery Mildew Disease Severity in Wheat Based on Machine Learning.
    Feng ZH; Wang LY; Yang ZQ; Zhang YY; Li X; Song L; He L; Duan JZ; Feng W
    Front Plant Sci; 2022; 13():828454. PubMed ID: 35386677
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Predictive modeling of blood pressure during hemodialysis: a comparison of linear model, random forest, support vector regression, XGBoost, LASSO regression and ensemble method.
    Huang JC; Tsai YC; Wu PY; Lien YH; Chien CY; Kuo CF; Hung JF; Chen SC; Kuo CH
    Comput Methods Programs Biomed; 2020 Oct; 195():105536. PubMed ID: 32485511
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.