These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 36443486)

  • 1. A large-scale neural network training framework for generalized estimation of single-trial population dynamics.
    Keshtkaran MR; Sedler AR; Chowdhury RH; Tandon R; Basrai D; Nguyen SL; Sohn H; Jazayeri M; Miller LE; Pandarinath C
    Nat Methods; 2022 Dec; 19(12):1572-1577. PubMed ID: 36443486
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Decoding Movements from Cortical Ensemble Activity Using a Long Short-Term Memory Recurrent Network.
    Tseng PH; Urpi NA; Lebedev M; Nicolelis M
    Neural Comput; 2019 Jun; 31(6):1085-1113. PubMed ID: 30979355
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rotational dynamics in motor cortex are consistent with a feedback controller.
    Kalidindi HT; Cross KP; Lillicrap TP; Omrani M; Falotico E; Sabes PN; Scott SH
    Elife; 2021 Nov; 10():. PubMed ID: 34730516
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unsupervised Discovery of Demixed, Low-Dimensional Neural Dynamics across Multiple Timescales through Tensor Component Analysis.
    Williams AH; Kim TH; Wang F; Vyas S; Ryu SI; Shenoy KV; Schnitzer M; Kolda TG; Ganguli S
    Neuron; 2018 Jun; 98(6):1099-1115.e8. PubMed ID: 29887338
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Information-processing dynamics in neural networks of macaque cerebral cortex reflect cognitive state and behavior.
    Varley TF; Sporns O; Schaffelhofer S; Scherberger H; Dann B
    Proc Natl Acad Sci U S A; 2023 Jan; 120(2):e2207677120. PubMed ID: 36603032
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Large-Scale, High-Resolution Comparison of the Core Visual Object Recognition Behavior of Humans, Monkeys, and State-of-the-Art Deep Artificial Neural Networks.
    Rajalingham R; Issa EB; Bashivan P; Kar K; Schmidt K; DiCarlo JJ
    J Neurosci; 2018 Aug; 38(33):7255-7269. PubMed ID: 30006365
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Motor decoding from the posterior parietal cortex using deep neural networks.
    Borra D; Filippini M; Ursino M; Fattori P; Magosso E
    J Neural Eng; 2023 May; 20(3):. PubMed ID: 37130514
    [No Abstract]   [Full Text] [Related]  

  • 8. Bayesian multilevel hidden Markov models identify stable state dynamics in longitudinal recordings from macaque primary motor cortex.
    Kirchherr S; Mildiner Moraga S; Coudé G; Bimbi M; Ferrari PF; Aarts E; Bonaiuto JJ
    Eur J Neurosci; 2023 Aug; 58(3):2787-2806. PubMed ID: 37382060
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shared population-level dynamics in monkey premotor cortex during solo action, joint action and action observation.
    Pezzulo G; Donnarumma F; Ferrari-Toniolo S; Cisek P; Battaglia-Mayer A
    Prog Neurobiol; 2022 Mar; 210():102214. PubMed ID: 34979174
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neural population dynamics in motor cortex are different for reach and grasp.
    Suresh AK; Goodman JM; Okorokova EV; Kaufman M; Hatsopoulos NG; Bensmaia SJ
    Elife; 2020 Nov; 9():. PubMed ID: 33200745
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interplay between external inputs and recurrent dynamics during movement preparation and execution in a network model of motor cortex.
    Bachschmid-Romano L; Hatsopoulos NG; Brunel N
    Elife; 2023 May; 12():. PubMed ID: 37166452
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting Reaction Time from the Neural State Space of the Premotor and Parietal Grasping Network.
    Michaels JA; Dann B; Intveld RW; Scherberger H
    J Neurosci; 2015 Aug; 35(32):11415-32. PubMed ID: 26269647
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Putative Multiple-Demand System in the Macaque Brain.
    Mitchell DJ; Bell AH; Buckley MJ; Mitchell AS; Sallet J; Duncan J
    J Neurosci; 2016 Aug; 36(33):8574-85. PubMed ID: 27535906
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Arm trajectory and representation of movement processing in motor cortical activity.
    Schwartz AB; Moran DW
    Eur J Neurosci; 2000 Jun; 12(6):1851-6. PubMed ID: 10886326
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identifying distinct neural features between the initial and corrective phases of precise reaching using AutoLFADS.
    Lee WH; Karpowicz BM; Pandarinath C; Rouse AG
    bioRxiv; 2024 Feb; ():. PubMed ID: 38352314
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Primary motor cortex neurons classified in a postural task predict muscle activation patterns in a reaching task.
    Heming EA; Lillicrap TP; Omrani M; Herter TM; Pruszynski JA; Scott SH
    J Neurophysiol; 2016 Apr; 115(4):2021-32. PubMed ID: 26843605
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Emergence of brain-like mirror-symmetric viewpoint tuning in convolutional neural networks.
    Farzmahdi A; Zarco W; Freiwald WA; Kriegeskorte N; Golan T
    Elife; 2024 Apr; 13():. PubMed ID: 38661128
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cortico-cortical connections of somatic sensory cortex (areas 3, 1 and 2) in the rhesus monkey.
    Vogt BA; Pandya DN
    J Comp Neurol; 1978 Jan; 177(2):179-91. PubMed ID: 413844
    [No Abstract]   [Full Text] [Related]  

  • 19. Directional information from neuronal ensembles in the primate orofacial sensorimotor cortex.
    Arce FI; Lee JC; Ross CF; Sessle BJ; Hatsopoulos NG
    J Neurophysiol; 2013 Sep; 110(6):1357-69. PubMed ID: 23785133
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cyclic, Condition-Independent Activity in Primary Motor Cortex Predicts Corrective Movement Behavior.
    Rouse AG; Schieber MH; Sarma SV
    eNeuro; 2022; 9(2):. PubMed ID: 35346960
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.