These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 36443600)

  • 1. Feedback-controlled hydrogels with homeostatic oscillations and dissipative signal transduction.
    Zhang H; Zeng H; Eklund A; Guo H; Priimagi A; Ikkala O
    Nat Nanotechnol; 2022 Dec; 17(12):1303-1310. PubMed ID: 36443600
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Memristors in plants.
    Volkov AG; Tucket C; Reedus J; Volkova MI; Markin VS; Chua L
    Plant Signal Behav; 2014; 9(3):e28152. PubMed ID: 24556876
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Morphing structures and signal transduction in Mimosa pudica L. induced by localized thermal stress.
    Volkov AG; O'Neal L; Volkova MI; Markin VS
    J Plant Physiol; 2013 Oct; 170(15):1317-27. PubMed ID: 23747058
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bio-Inspired Far-From-Equilibrium Hydrogels: Design Principles and Applications.
    Tang J; Cheng Y; Ding M; Wang C
    Chempluschem; 2023 Dec; 88(12):e202300449. PubMed ID: 37787015
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mimosa pudica, Dionaea muscipula and anesthetics.
    De Luccia TP
    Plant Signal Behav; 2012 Sep; 7(9):1163-7. PubMed ID: 22899087
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular electronics in pinnae of Mimosa pudica.
    Volkov AG; Foster JC; Markin VS
    Plant Signal Behav; 2010 Jul; 5(7):826-31. PubMed ID: 20448476
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cold plasma interactions with plants: Morphing and movements of Venus flytrap and Mimosa pudica induced by argon plasma jet.
    Volkov AG; Xu KG; Kolobov VI
    Bioelectrochemistry; 2017 Dec; 118():100-105. PubMed ID: 28780442
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Programmable Morphing Hydrogels for Soft Actuators and Robots: From Structure Designs to Active Functions.
    Jiao D; Zhu QL; Li CY; Zheng Q; Wu ZL
    Acc Chem Res; 2022 Jun; 55(11):1533-1545. PubMed ID: 35413187
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mimosa pudica: Electrical and mechanical stimulation of plant movements.
    Volkov AG; Foster JC; Ashby TA; Walker RK; Johnson JA; Markin VS
    Plant Cell Environ; 2010 Feb; 33(2):163-73. PubMed ID: 19895396
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A touchy subject: Ca
    Bakshi A; Swanson SJ; Gilroy S
    Cell Calcium; 2023 Mar; 110():102695. PubMed ID: 36669253
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Signal transduction in Mimosa pudica: biologically closed electrical circuits.
    Volkov AG; Foster JC; Markin VS
    Plant Cell Environ; 2010 May; 33(5):816-27. PubMed ID: 20040063
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Artificial Homeostasis Systems Based on Feedback Reaction Networks: Design Principles and Future Promises.
    Ranganath VA; Maity I
    Angew Chem Int Ed Engl; 2024 Apr; 63(14):e202318134. PubMed ID: 38226567
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shape-Morphing Materials from Stimuli-Responsive Hydrogel Hybrids.
    Jeon SJ; Hauser AW; Hayward RC
    Acc Chem Res; 2017 Feb; 50(2):161-169. PubMed ID: 28181798
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthetic homeostatic materials with chemo-mechano-chemical self-regulation.
    He X; Aizenberg M; Kuksenok O; Zarzar LD; Shastri A; Balazs AC; Aizenberg J
    Nature; 2012 Jul; 487(7406):214-8. PubMed ID: 22785318
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Somatosensory actuator based on stretchable conductive photothermally responsive hydrogel.
    Zhao Y; Lo CY; Ruan L; Pi CH; Kim C; Alsaid Y; Frenkel I; Rico R; Tsao TC; He X
    Sci Robot; 2021 Apr; 6(53):. PubMed ID: 34043561
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bio-chemo-electro-mechanical modelling of the rapid movement of Mimosa pudica.
    Wang Y; Li H
    Bioelectrochemistry; 2020 Aug; 134():107533. PubMed ID: 32380450
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spontaneous and rapid electro-actuated snapping of constrained polyelectrolyte hydrogels.
    Li CY; Zheng SY; Hao XP; Hong W; Zheng Q; Wu ZL
    Sci Adv; 2022 Apr; 8(15):eabm9608. PubMed ID: 35417235
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The dynamics of quantifiable homeostasis. II. Characterization of linear processes.
    Renie WA; Murphy EA
    Am J Med Genet; 1983 Aug; 15(4):637-53. PubMed ID: 6614052
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel Motion Sequences in Plant-Inspired Robotics: Combining Inspirations from Snap-Trapping in Two Plant Species into an Artificial Venus Flytrap Demonstrator.
    Tauber FJ; Auth P; Teichmann J; Scherag FD; Speck T
    Biomimetics (Basel); 2022 Jul; 7(3):. PubMed ID: 35892370
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calcium-mediated rapid movements defend against herbivorous insects in Mimosa pudica.
    Hagihara T; Mano H; Miura T; Hasebe M; Toyota M
    Nat Commun; 2022 Nov; 13(1):6412. PubMed ID: 36376294
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.