These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Tomato histone H2B monoubiquitination enzymes SlHUB1 and SlHUB2 contribute to disease resistance against Botrytis cinerea through modulating the balance between SA- and JA/ET-mediated signaling pathways. Zhang Y; Li D; Zhang H; Hong Y; Huang L; Liu S; Li X; Ouyang Z; Song F BMC Plant Biol; 2015 Oct; 15():252. PubMed ID: 26490733 [TBL] [Abstract][Full Text] [Related]
4. Salicylic Acid Is Involved in the Basal Resistance of Tomato Plants to Citrus Exocortis Viroid and Tomato Spotted Wilt Virus. López-Gresa MP; Lisón P; Yenush L; Conejero V; Rodrigo I; Bellés JM PLoS One; 2016; 11(11):e0166938. PubMed ID: 27893781 [TBL] [Abstract][Full Text] [Related]
5. Role of dioxygenase α-DOX2 and SA in basal response and in hexanoic acid-induced resistance of tomato (Solanum lycopersicum) plants against Botrytis cinerea. Angulo C; de la O Leyva M; Finiti I; López-Cruz J; Fernández-Crespo E; García-Agustín P; González-Bosch C J Plant Physiol; 2015 Mar; 175():163-73. PubMed ID: 25543862 [TBL] [Abstract][Full Text] [Related]
6. Molecular cloning and characterization of a novel tomato xylosyltransferase specific for gentisic acid. Tárraga S; Lisón P; López-Gresa MP; Torres C; Rodrigo I; Bellés JM; Conejero V J Exp Bot; 2010 Oct; 61(15):4325-38. PubMed ID: 20729481 [TBL] [Abstract][Full Text] [Related]
7. Zhang Y; Zhao L; Zhao J; Li Y; Wang J; Guo R; Gan S; Liu CJ; Zhang K Plant Physiol; 2017 Nov; 175(3):1082-1093. PubMed ID: 28899963 [TBL] [Abstract][Full Text] [Related]
8. Priming of camalexin accumulation in induced systemic resistance by beneficial bacteria against Botrytis cinerea and Pseudomonas syringae pv. tomato DC3000. Nguyen NH; Trotel-Aziz P; Villaume S; Rabenoelina F; Clément C; Baillieul F; Aziz A J Exp Bot; 2022 Jun; 73(11):3743-3757. PubMed ID: 35191984 [TBL] [Abstract][Full Text] [Related]
9. The phytotoxin coronatine contributes to pathogen fitness and is required for suppression of salicylic acid accumulation in tomato inoculated with Pseudomonas syringae pv. tomato DC3000. Uppalapati SR; Ishiga Y; Wangdi T; Kunkel BN; Anand A; Mysore KS; Bender CL Mol Plant Microbe Interact; 2007 Aug; 20(8):955-65. PubMed ID: 17722699 [TBL] [Abstract][Full Text] [Related]
10. The silencing of DEK reduced disease resistance against Botrytis cinerea and Pseudomonas syringae pv. tomato DC3000 based on virus-induced gene silencing analysis in tomato. Zhang H; Yan M; Deng R; Song F; Jiang M Gene; 2020 Feb; 727():144245. PubMed ID: 31715302 [TBL] [Abstract][Full Text] [Related]
11. Tomato SlSAP3, a member of the stress-associated protein family, is a positive regulator of immunity against Pseudomonas syringae pv. tomato DC3000. Liu S; Wang J; Jiang S; Wang H; Gao Y; Zhang H; Li D; Song F Mol Plant Pathol; 2019 Jun; 20(6):815-830. PubMed ID: 30907488 [TBL] [Abstract][Full Text] [Related]
12. Tomato SR/CAMTA transcription factors SlSR1 and SlSR3L negatively regulate disease resistance response and SlSR1L positively modulates drought stress tolerance. Li X; Huang L; Zhang Y; Ouyang Z; Hong Y; Zhang H; Li D; Song F BMC Plant Biol; 2014 Oct; 14():286. PubMed ID: 25348703 [TBL] [Abstract][Full Text] [Related]
13. Effect of Benzothiadiazole on the Metabolome of Tomato Plants Infected by Citrus Exocortis Viroid. López-Gresa MP; Payá C; Rodrigo I; Bellés JM; Barceló S; Hae Choi Y; Verpoorte R; Lisón P Viruses; 2019 May; 11(5):. PubMed ID: 31091764 [TBL] [Abstract][Full Text] [Related]
14. Tomato photorespiratory glycolate-oxidase-derived H Ahammed GJ; Li X; Zhang G; Zhang H; Shi J; Pan C; Yu J; Shi K Plant Cell Environ; 2018 May; 41(5):1126-1138. PubMed ID: 28164315 [TBL] [Abstract][Full Text] [Related]
15. An untargeted global metabolomic analysis reveals the biochemical changes underlying basal resistance and priming in Solanum lycopersicum, and identifies 1-methyltryptophan as a metabolite involved in plant responses to Botrytis cinerea and Pseudomonas syringae. Camañes G; Scalschi L; Vicedo B; González-Bosch C; García-Agustín P Plant J; 2015 Oct; 84(1):125-39. PubMed ID: 26270176 [TBL] [Abstract][Full Text] [Related]
16. Accumulation of gentisic acid as associated with systemic infections but not with the hypersensitive response in plant-pathogen interactions. Bellés JM; Garro R; Pallás V; Fayos J; Rodrigo I; Conejero V Planta; 2006 Feb; 223(3):500-11. PubMed ID: 16331468 [TBL] [Abstract][Full Text] [Related]
17. Oxathiapiprolin, a Novel Chemical Inducer Activates the Plant Disease Resistance. Peng Q; Wang Z; Liu P; Liang Y; Zhao Z; Li W; Liu X; Xia Y Int J Mol Sci; 2020 Feb; 21(4):. PubMed ID: 32059380 [TBL] [Abstract][Full Text] [Related]
18. Cauliflower mosaic virus protein P6 inhibits signaling responses to salicylic acid and regulates innate immunity. Love AJ; Geri C; Laird J; Carr C; Yun BW; Loake GJ; Tada Y; Sadanandom A; Milner JJ PLoS One; 2012; 7(10):e47535. PubMed ID: 23071821 [TBL] [Abstract][Full Text] [Related]
19. Differential volatile emissions and salicylic acid levels from tobacco plants in response to different strains of Pseudomonas syringae. Huang J; Cardoza YJ; Schmelz EA; Raina R; Engelberth J; Tumlinson JH Planta; 2003 Sep; 217(5):767-75. PubMed ID: 12712338 [TBL] [Abstract][Full Text] [Related]
20. Induction of gentisic acid 5-O-beta-D-xylopyranoside in tomato and cucumber plants infected by different pathogens. Fayos J; Bellés JM; López-Gresa MP; Primo J; Conejero V Phytochemistry; 2006 Jan; 67(2):142-8. PubMed ID: 16321412 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]