BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 36443666)

  • 1. MP4: a machine learning based classification tool for prediction and functional annotation of pathogenic proteins from metagenomic and genomic datasets.
    Gupta A; Malwe AS; Srivastava GN; Thoudam P; Hibare K; Sharma VK
    BMC Bioinformatics; 2022 Nov; 23(1):507. PubMed ID: 36443666
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MP3: a software tool for the prediction of pathogenic proteins in genomic and metagenomic data.
    Gupta A; Kapil R; Dhakan DB; Sharma VK
    PLoS One; 2014; 9(4):e93907. PubMed ID: 24736651
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Woods: A fast and accurate functional annotator and classifier of genomic and metagenomic sequences.
    Sharma AK; Gupta A; Kumar S; Dhakan DB; Sharma VK
    Genomics; 2015 Jul; 106(1):1-6. PubMed ID: 25863333
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of peptidoglycan hydrolases- a new class of antibacterial proteins.
    Sharma AK; Kumar S; K H; Dhakan DB; Sharma VK
    BMC Genomics; 2016 May; 17():411. PubMed ID: 27229861
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 16S classifier: a tool for fast and accurate taxonomic classification of 16S rRNA hypervariable regions in metagenomic datasets.
    Chaudhary N; Sharma AK; Agarwal P; Gupta A; Sharma VK
    PLoS One; 2015; 10(2):e0116106. PubMed ID: 25646627
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MegaR: an interactive R package for rapid sample classification and phenotype prediction using metagenome profiles and machine learning.
    Dhungel E; Mreyoud Y; Gwak HJ; Rajeh A; Rho M; Ahn TH
    BMC Bioinformatics; 2021 Jan; 22(1):25. PubMed ID: 33461494
    [TBL] [Abstract][Full Text] [Related]  

  • 7. COGNIZER: A Framework for Functional Annotation of Metagenomic Datasets.
    Bose T; Haque MM; Reddy C; Mande SS
    PLoS One; 2015; 10(11):e0142102. PubMed ID: 26561344
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Massive metagenomic data analysis using abundance-based machine learning.
    Harris ZN; Dhungel E; Mosior M; Ahn TH
    Biol Direct; 2019 Aug; 14(1):12. PubMed ID: 31370905
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Improved Machine Learning-Based Approach to Assess the Microbial Diversity in Major North Indian River Ecosystems.
    Choudhury N; Sahu TK; Rao AR; Rout AK; Behera BK
    Genes (Basel); 2023 May; 14(5):. PubMed ID: 37239442
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of anti-inflammatory proteins/peptides: an insilico approach.
    Gupta S; Sharma AK; Shastri V; Madhu MK; Sharma VK
    J Transl Med; 2017 Jan; 15(1):7. PubMed ID: 28057002
    [TBL] [Abstract][Full Text] [Related]  

  • 11. AMAnD: an automated metagenome anomaly detection methodology utilizing DeepSVDD neural networks.
    Price C; Russell JA
    Front Public Health; 2023; 11():1181911. PubMed ID: 37497030
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Class prediction and feature selection with linear optimization for metagenomic count data.
    Liu Z; Chen D; Sheng L; Liu AY
    PLoS One; 2013; 8(3):e53253. PubMed ID: 23555553
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Systematic evaluation of supervised machine learning for sample origin prediction using metagenomic sequencing data.
    Chen JC; Tyler AD
    Biol Direct; 2020 Dec; 15(1):29. PubMed ID: 33302990
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ProInflam: a webserver for the prediction of proinflammatory antigenicity of peptides and proteins.
    Gupta S; Madhu MK; Sharma AK; Sharma VK
    J Transl Med; 2016 Jun; 14(1):178. PubMed ID: 27301453
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automatic disease prediction from human gut metagenomic data using boosting GraphSAGE.
    Syama K; Jothi JAA; Khanna N
    BMC Bioinformatics; 2023 Mar; 24(1):126. PubMed ID: 37003965
    [TBL] [Abstract][Full Text] [Related]  

  • 16. deepNEC: a novel alignment-free tool for the identification and classification of nitrogen biochemical network-related enzymes using deep learning.
    Duhan N; Norton JM; Kaundal R
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35325031
    [TBL] [Abstract][Full Text] [Related]  

  • 17. eggNOG-mapper v2: Functional Annotation, Orthology Assignments, and Domain Prediction at the Metagenomic Scale.
    Cantalapiedra CP; Hernández-Plaza A; Letunic I; Bork P; Huerta-Cepas J
    Mol Biol Evol; 2021 Dec; 38(12):5825-5829. PubMed ID: 34597405
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GNPI: Graph normalization to integrate phylogenetic information for metagenomic host phenotype prediction.
    Li B; Zhong D; Qiao J; Jiang X
    Methods; 2022 Sep; 205():11-17. PubMed ID: 35636652
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Machine learning algorithms for outcome prediction in (chemo)radiotherapy: An empirical comparison of classifiers.
    Deist TM; Dankers FJWM; Valdes G; Wijsman R; Hsu IC; Oberije C; Lustberg T; van Soest J; Hoebers F; Jochems A; El Naqa I; Wee L; Morin O; Raleigh DR; Bots W; Kaanders JH; Belderbos J; Kwint M; Solberg T; Monshouwer R; Bussink J; Dekker A; Lambin P
    Med Phys; 2018 Jul; 45(7):3449-3459. PubMed ID: 29763967
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Large-scale machine learning for metagenomics sequence classification.
    Vervier K; Mahé P; Tournoud M; Veyrieras JB; Vert JP
    Bioinformatics; 2016 Apr; 32(7):1023-32. PubMed ID: 26589281
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.