These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 36443676)

  • 1. Deep learning and multi-omics approach to predict drug responses in cancer.
    Wang C; Lye X; Kaalia R; Kumar P; Rajapakse JC
    BMC Bioinformatics; 2022 Nov; 22(Suppl 10):632. PubMed ID: 36443676
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Super.FELT: supervised feature extraction learning using triplet loss for drug response prediction with multi-omics data.
    Park S; Soh J; Lee H
    BMC Bioinformatics; 2021 May; 22(1):269. PubMed ID: 34034645
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DeepFusionCDR: Employing Multi-Omics Integration and Molecule-Specific Transformers for Enhanced Prediction of Cancer Drug Responses.
    Hu X; Zhang P; Zhang J; Deng L
    IEEE J Biomed Health Inform; 2024 Oct; 28(10):6248-6258. PubMed ID: 38935469
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of anticancer drug sensitivity using an interpretable model guided by deep learning.
    Pang W; Chen M; Qin Y
    BMC Bioinformatics; 2024 May; 25(1):182. PubMed ID: 38724920
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The prediction of drug sensitivity by multi-omics fusion reveals the heterogeneity of drug response in pan-cancer.
    Wang C; Zhang M; Zhao J; Li B; Xiao X; Zhang Y
    Comput Biol Med; 2023 Sep; 163():107220. PubMed ID: 37406589
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SWnet: a deep learning model for drug response prediction from cancer genomic signatures and compound chemical structures.
    Zuo Z; Wang P; Chen X; Tian L; Ge H; Qian D
    BMC Bioinformatics; 2021 Sep; 22(1):434. PubMed ID: 34507532
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep learning based feature-level integration of multi-omics data for breast cancer patients survival analysis.
    Tong L; Mitchel J; Chatlin K; Wang MD
    BMC Med Inform Decis Mak; 2020 Sep; 20(1):225. PubMed ID: 32933515
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gene-centric multi-omics integration with convolutional encoders for cancer drug response prediction.
    Lee M; Kim PJ; Joe H; Kim HG
    Comput Biol Med; 2022 Dec; 151(Pt A):106192. PubMed ID: 36327883
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of drug sensitivity based on multi-omics data using deep learning and similarity network fusion approaches.
    Liu XY; Mei XY
    Front Bioeng Biotechnol; 2023; 11():1156372. PubMed ID: 37139048
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MMCL-CDR: enhancing cancer drug response prediction with multi-omics and morphology images contrastive representation learning.
    Li Y; Guo Z; Gao X; Wang G
    Bioinformatics; 2023 Dec; 39(12):. PubMed ID: 38070154
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DeepDSC: A Deep Learning Method to Predict Drug Sensitivity of Cancer Cell Lines.
    Li M; Wang Y; Zheng R; Shi X; Li Y; Wu FX; Wang J
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(2):575-582. PubMed ID: 31150344
    [TBL] [Abstract][Full Text] [Related]  

  • 12. De novo Prediction of Cell-Drug Sensitivities Using Deep Learning-based Graph Regularized Matrix Factorization.
    Ren S; Tao Y; Yu K; Xue Y; Schwartz R; Lu X
    Pac Symp Biocomput; 2022; 27():278-289. PubMed ID: 34890156
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting cancer drug response using parallel heterogeneous graph convolutional networks with neighborhood interactions.
    Peng W; Liu H; Dai W; Yu N; Wang J
    Bioinformatics; 2022 Sep; 38(19):4546-4553. PubMed ID: 35997568
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting Drug Response Based on Multi-Omics Fusion and Graph Convolution.
    Peng W; Chen T; Dai W
    IEEE J Biomed Health Inform; 2022 Mar; 26(3):1384-1393. PubMed ID: 34347616
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DRN-CDR: A cancer drug response prediction model using multi-omics and drug features.
    Saranya KR; Vimina ER
    Comput Biol Chem; 2024 Oct; 112():108175. PubMed ID: 39191166
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep learning assisted multi-omics integration for survival and drug-response prediction in breast cancer.
    Malik V; Kalakoti Y; Sundar D
    BMC Genomics; 2021 Mar; 22(1):214. PubMed ID: 33761889
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrating multi-omics data by learning modality invariant representations for improved prediction of overall survival of cancer.
    Tong L; Wu H; Wang MD
    Methods; 2021 May; 189():74-85. PubMed ID: 32763377
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Geometric graph neural networks on multi-omics data to predict cancer survival outcomes.
    Zhu J; Oh JH; Simhal AK; Elkin R; Norton L; Deasy JO; Tannenbaum A
    Comput Biol Med; 2023 Sep; 163():107117. PubMed ID: 37329617
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting breast cancer drug response using a multiple-layer cell line drug response network model.
    Huang S; Hu P; Lakowski TM
    BMC Cancer; 2021 May; 21(1):648. PubMed ID: 34059012
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DeepDRK: a deep learning framework for drug repurposing through kernel-based multi-omics integration.
    Wang Y; Yang Y; Chen S; Wang J
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33822890
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.