These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 36444299)

  • 1. Microdevice-based mechanical compression on living cells.
    Onal S; Alkaisi MM; Nock V
    iScience; 2022 Dec; 25(12):105518. PubMed ID: 36444299
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The matrix environmental and cell mechanical properties regulate cell migration and contribute to the invasive phenotype of cancer cells.
    Mierke CT
    Rep Prog Phys; 2019 Jun; 82(6):064602. PubMed ID: 30947151
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Small Force, Big Impact: Next Generation Organ-on-a-Chip Systems Incorporating Biomechanical Cues.
    Ergir E; Bachmann B; Redl H; Forte G; Ertl P
    Front Physiol; 2018; 9():1417. PubMed ID: 30356887
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering mechanobiology through organoids-on-chip: A strategy to boost therapeutics.
    Charelli LE; Ferreira JPD; Naveira-Cotta CP; Balbino TA
    J Tissue Eng Regen Med; 2021 Nov; 15(11):883-899. PubMed ID: 34339588
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfluidics-based in vivo mimetic systems for the study of cellular biology.
    Kim D; Wu X; Young AT; Haynes CL
    Acc Chem Res; 2014 Apr; 47(4):1165-73. PubMed ID: 24555566
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wide-range viscoelastic compression forces in microfluidics to probe cell-dependent nuclear structural and mechanobiological responses.
    Maremonti MI; Panzetta V; Dannhauser D; Netti PA; Causa F
    J R Soc Interface; 2022 Apr; 19(189):20210880. PubMed ID: 35440204
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A microfabricated platform with hydrogel arrays for 3D mechanical stimulation of cells.
    Liu H; Usprech J; Sun Y; Simmons CA
    Acta Biomater; 2016 Apr; 34():113-124. PubMed ID: 26646540
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interconnectable Dynamic Compression Bioreactors for Combinatorial Screening of Cell Mechanobiology in Three Dimensions.
    Seo J; Shin JY; Leijten J; Jeon O; Bal Öztürk A; Rouwkema J; Li Y; Shin SR; Hajiali H; Alsberg E; Khademhosseini A
    ACS Appl Mater Interfaces; 2018 Apr; 10(16):13293-13303. PubMed ID: 29542324
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of sequential cyclic compression on cancer cells in a flexible microdevice.
    Onal S; Alkaisi MM; Nock V
    PLoS One; 2023; 18(1):e0279896. PubMed ID: 36602956
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nano-scale microfluidics to study 3D chemotaxis at the single cell level.
    Frick C; Dettinger P; Renkawitz J; Jauch A; Berger CT; Recher M; Schroeder T; Mehling M
    PLoS One; 2018; 13(6):e0198330. PubMed ID: 29879160
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Microfluidic Platform for Stimulating Chondrocytes with Dynamic Compression.
    Lee D; Erickson A; Dudley AT; Ryu S
    J Vis Exp; 2019 Sep; (151):. PubMed ID: 31566611
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulating the mechanical stimulation of cells on a porous hydrogel scaffold using an FSI model to predict cell differentiation.
    Azizi P; Drobek C; Budday S; Seitz H
    Front Bioeng Biotechnol; 2023; 11():1249867. PubMed ID: 37799813
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Actuated 3D microgels for single cell mechanobiology.
    Özkale B; Lou J; Özelçi E; Elosegui-Artola A; Tringides CM; Mao AS; Sakar MS; Mooney DJ
    Lab Chip; 2022 May; 22(10):1962-1970. PubMed ID: 35437554
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Precision Hydrogels for the Study of Cancer Cell Mechanobiology.
    Sievers J; Mahajan V; Welzel PB; Werner C; Taubenberger A
    Adv Healthc Mater; 2023 Jun; 12(14):e2202514. PubMed ID: 36826799
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A 3D bioreactor model to study osteocyte differentiation and mechanobiology under perfusion and compressive mechanical loading.
    Rindt WD; Krug M; Yamada S; Sennefelder F; Belz L; Cheng WH; Azeem M; Kuric M; Evers M; Leich E; Hartmann TN; Pereira AR; Hermann M; Hansmann J; Mussoni C; Stahlhut P; Ahmad T; Yassin MA; Mustafa K; Ebert R; Jundt F
    Acta Biomater; 2024 Aug; 184():210-225. PubMed ID: 38969078
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of Dynamic Culture and Periodic Compression on Human Mesenchymal Stem Cell Proliferation and Chondrogenesis.
    Guo T; Yu L; Lim CG; Goodley AS; Xiao X; Placone JK; Ferlin KM; Nguyen BN; Hsieh AH; Fisher JP
    Ann Biomed Eng; 2016 Jul; 44(7):2103-13. PubMed ID: 26577256
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D Cell Cultures: Evolution of an Ancient Tool for New Applications.
    Cacciamali A; Villa R; Dotti S
    Front Physiol; 2022; 13():836480. PubMed ID: 35936888
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfluidics for mechanobiology of model organisms.
    Kim AA; Nekimken AL; Fechner S; O'Brien LE; Pruitt BL
    Methods Cell Biol; 2018; 146():217-259. PubMed ID: 30037463
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct 3D printed biocompatible microfluidics: assessment of human mesenchymal stem cell differentiation and cytotoxic drug screening in a dynamic culture system.
    Riester O; Laufer S; Deigner HP
    J Nanobiotechnology; 2022 Dec; 20(1):540. PubMed ID: 36575530
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.