These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 36444531)

  • 1. Millet bran protein hydrolysates derived peptides-zinc chelate: Structural characterization, security prediction in silico, zinc transport capacity and stability against different food processing conditions.
    Li Y; Shi P; Zheng Y; Guo M; Zhuang Y; Huo X
    J Food Sci; 2023 Jan; 88(1):477-490. PubMed ID: 36444531
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pentapeptide-Zinc Chelate from Sweet Almond Expeller Amandin Hydrolysates: Structural and Physicochemical Characteristics, Stability and Zinc Transport Ability In Vitro.
    Zhang J; Ye Z
    Molecules; 2022 Nov; 27(22):. PubMed ID: 36432037
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two Novel Antihypertensive Peptides Identified in Millet Bran Glutelin-2 Hydrolysates: Purification, In Silico Characterization, Molecular Docking with ACE and Stability in Various Food Processing Conditions.
    Zheng Y; Wang X; Guo M; Yan X; Zhuang Y; Sun Y; Li J
    Foods; 2022 May; 11(9):. PubMed ID: 35564079
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel Zn-Binding Peptide Isolated from Soy Protein Hydrolysates: Purification, Structure, and Digestion.
    Zhu S; Zheng Y; He S; Su D; Nag A; Zeng Q; Yuan Y
    J Agric Food Chem; 2021 Jan; 69(1):483-490. PubMed ID: 33370528
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Novel Antihypertensive Pentapeptide Identified in Quinoa Bran Globulin Hydrolysates: Purification, In Silico Characterization, Molecular Docking with ACE and Stability against Different Food-Processing Conditions.
    Wei Y; Liu Y; Li Y; Wang X; Zheng Y; Xu J; Sang S; Liu Y
    Nutrients; 2022 Jun; 14(12):. PubMed ID: 35745149
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation process optimization, structural characterization and in vitro digestion stability analysis of Antarctic krill (Euphausia superba) peptides-zinc chelate.
    Sun R; Liu X; Yu Y; Miao J; Leng K; Gao H
    Food Chem; 2021 Mar; 340():128056. PubMed ID: 33032152
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Particulate nanocomposite from oyster (Crassostrea rivularis) hydrolysates via zinc chelation improves zinc solubility and peptide activity.
    Zhang Z; Zhou F; Liu X; Zhao M
    Food Chem; 2018 Aug; 258():269-277. PubMed ID: 29655733
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification and characterization of the peptides with calcium-binding capacity from tilapia (Oreochromis niloticus) skin gelatin enzymatic hydrolysates.
    Bingtong L; Yongliang Z; Liping S
    J Food Sci; 2020 Jan; 85(1):114-122. PubMed ID: 31869867
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anti-inflammatory activity of peptides derived from millet bran
    He R; Liu M; Zou Z; Wang M; Wang Z; Ju X; Hao G
    Food Funct; 2022 Feb; 13(4):1881-1889. PubMed ID: 35084423
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gastrointestinal digestion and absorption characterization in vitro of zinc-chelating hydrolysate from scallop adductor (Patinopecten yessoensis).
    Sun J; Liu X; Wang Z; Yin F; Liu H; Nakamura Y; Yu C; Zhou D
    J Sci Food Agric; 2022 Jun; 102(8):3277-3286. PubMed ID: 34802153
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oyster-Derived Zinc-Binding Peptide Modified by Plastein Reaction via Zinc Chelation Promotes the Intestinal Absorption of Zinc.
    Li J; Gong C; Wang Z; Gao R; Ren J; Zhou X; Wang H; Xu H; Xiao F; Cao Y; Zhao Y
    Mar Drugs; 2019 Jun; 17(6):. PubMed ID: 31181804
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Separation and identification of zinc-chelating peptides from sesame protein hydrolysate using IMAC-Zn²⁺ and LC-MS/MS.
    Wang C; Li B; Ao J
    Food Chem; 2012 Sep; 134(2):1231-8. PubMed ID: 23107753
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Zn(II) chelating with peptides found in sesame protein hydrolysates: identification of the binding sites of complexes.
    Wang C; Wang C; Li B; Li H
    Food Chem; 2014 Dec; 165():594-602. PubMed ID: 25038717
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Iron-Binding Capacity of Defatted Rice Bran Hydrolysate and Bioavailability of Iron in Caco-2 Cells.
    Foong LC; Imam MU; Ismail M
    J Agric Food Chem; 2015 Oct; 63(41):9029-36. PubMed ID: 26435326
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glycosylated peptide-calcium chelate: Characterization, calcium absorption promotion and prebiotic effect.
    Wu X; Wang F; Cai X; Wang S
    Food Chem; 2023 Mar; 403():134335. PubMed ID: 36156396
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel Casein-Derived Peptide-Zinc Chelate: Zinc Chelation and Transepithelial Transport Characteristics.
    Wang B; Xiao S; Zhou G; Wang J
    J Agric Food Chem; 2023 May; 71(18):6978-6986. PubMed ID: 37129176
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel Peptide with Specific Calcium-Binding Capacity from Schizochytrium sp. Protein Hydrolysates and Calcium Bioavailability in Caco-2 Cells.
    Cai X; Lin J; Wang S
    Mar Drugs; 2016 Dec; 15(1):. PubMed ID: 28036002
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel peptide with a specific calcium-binding capacity from whey protein hydrolysate and the possible chelating mode.
    Zhao L; Huang Q; Huang S; Lin J; Wang S; Huang Y; Hong J; Rao P
    J Agric Food Chem; 2014 Oct; 62(42):10274-82. PubMed ID: 25265391
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation process optimization of pig bone collagen peptide-calcium chelate using response surface methodology and its structural characterization and stability analysis.
    Wu W; He L; Liang Y; Yue L; Peng W; Jin G; Ma M
    Food Chem; 2019 Jun; 284():80-89. PubMed ID: 30744872
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isolation of a novel calcium-binding peptide from phosvitin hydrolysates and the study of its calcium chelation mechanism.
    Zhang X; Jia Q; Li M; Liu H; Wang Q; Wu Y; Niu L; Liu Z
    Food Res Int; 2021 Mar; 141():110169. PubMed ID: 33642025
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.