BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 36444534)

  • 1. Design of supramolecular hybrid nanomaterials comprising peptide-based supramolecular nanofibers and
    Sugiura S; Shintani Y; Mori D; Higashi SL; Shibata A; Kitamura Y; Kawano SI; Hirosawa KM; Suzuki KGN; Ikeda M
    Nanoscale; 2023 Jan; 15(3):1024-1031. PubMed ID: 36444534
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hybrid Soft Nanomaterials Composed of DNA Microspheres and Supramolecular Nanostructures of Semi-artificial Glycopeptides.
    Higashi SL; Shibata A; Kitamura Y; Hirosawa KM; Suzuki KGN; Matsuura K; Ikeda M
    Chemistry; 2019 Sep; 25(51):11955-11962. PubMed ID: 31268200
    [TBL] [Abstract][Full Text] [Related]  

  • 3. One-Pot Construction of Multicomponent Supramolecular Materials Comprising Self-Sorted Supramolecular Architectures of DNA and Semi-Artificial Glycopeptides.
    Higashi SL; Hirosawa KM; Suzuki KGN; Matsuura K; Ikeda M
    ACS Appl Bio Mater; 2020 Dec; 3(12):9082-9092. PubMed ID: 35019585
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Imaging-Based Study on Control Factors over Self-Sorting of Supramolecular Nanofibers Formed from Peptide- and Lipid-type Hydrogelators.
    Kubota R; Liu S; Shigemitsu H; Nakamura K; Tanaka W; Ikeda M; Hamachi I
    Bioconjug Chem; 2018 Jun; 29(6):2058-2067. PubMed ID: 29742348
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expanding the chemical functionality of DNA nanomaterials generated by rolling circle amplification.
    Baker YR; Yuan L; Chen J; Belle R; Carlisle R; El-Sagheer AH; Brown T
    Nucleic Acids Res; 2021 Sep; 49(16):9042-9052. PubMed ID: 34403467
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Supramolecular Architectures of Nucleic Acid/Peptide Hybrids.
    Higashi SL; Rozi N; Hanifah SA; Ikeda M
    Int J Mol Sci; 2020 Dec; 21(24):. PubMed ID: 33322664
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enzyme-Instructed Self-Assembly (EISA) and Hydrogelation of Peptides.
    Gao J; Zhan J; Yang Z
    Adv Mater; 2020 Jan; 32(3):e1805798. PubMed ID: 31018025
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formation of Supramolecular Nanostructures through in Situ Self-Assembly and Post-Assembly Modification of a Biocatalytically Constructed Dipeptide Hydrazide.
    Shintani Y; Ohtomi T; Shibata A; Kitamura Y; Hirosawa KM; Suzuki KGN; Ikeda M
    Chemistry; 2022 Feb; 28(8):e202104421. PubMed ID: 34984747
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Programmable DNA Nanoflowers for Biosensing, Bioimaging, and Therapeutics.
    Lv J; Dong Y; Gu Z; Yang D
    Chemistry; 2020 Nov; 26(64):14512-14524. PubMed ID: 32969061
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Supramolecular chirality in self-assembled peptide amphiphile nanostructures.
    Garifullin R; Guler MO
    Chem Commun (Camb); 2015 Aug; 51(62):12470-3. PubMed ID: 26146021
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Supramolecular Assembly of Peptide Amphiphiles.
    Hendricks MP; Sato K; Palmer LC; Stupp SI
    Acc Chem Res; 2017 Oct; 50(10):2440-2448. PubMed ID: 28876055
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hierarchical supramolecular spinning of nanofibers in a microfluidic channel: tuning nanostructures at a dynamic interface.
    Numata M; Takigami Y; Takayama M; Kozawa T; Hirose N
    Chemistry; 2012 Oct; 18(41):13008-17. PubMed ID: 22945551
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Supramolecular Nanofibers of Drug-Peptide Amphiphile and Affibody Suppress HER2+ Tumor Growth.
    Liang C; Zhang L; Zhao W; Xu L; Chen Y; Long J; Wang F; Wang L; Yang Z
    Adv Healthc Mater; 2018 Nov; 7(22):e1800899. PubMed ID: 30302950
    [TBL] [Abstract][Full Text] [Related]  

  • 14. D-amino acid-containing supramolecular nanofibers for potential cancer therapeutics.
    Wang H; Feng Z; Xu B
    Adv Drug Deliv Rev; 2017 Feb; 110-111():102-111. PubMed ID: 27102943
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Supramolecular Self-Assembly Bioinspired Synthesis of Luminescent Gold Nanocluster-Embedded Peptide Nanofibers for Temperature Sensing and Cellular Imaging.
    Zhang W; Lin D; Wang H; Li J; Nienhaus GU; Su Z; Wei G; Shang L
    Bioconjug Chem; 2017 Sep; 28(9):2224-2229. PubMed ID: 28787136
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Construction of rolling circle amplification-based DNA nanostructures for biomedical applications.
    Xu Y; Lv Z; Yao C; Yang D
    Biomater Sci; 2022 Jun; 10(12):3054-3061. PubMed ID: 35535967
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Post-assembly functionalization of supramolecular nanostructures with bioactive peptides and fluorescent proteins by native chemical ligation.
    Khan S; Sur S; Dankers PY; da Silva RM; Boekhoven J; Poor TA; Stupp SI
    Bioconjug Chem; 2014 Apr; 25(4):707-17. PubMed ID: 24670265
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Encoding Reversible Hierarchical Structures with Supramolecular Peptide-DNA Materials.
    Daly ML; Gao Y; Freeman R
    Bioconjug Chem; 2019 Jul; 30(7):1864-1869. PubMed ID: 31181892
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of electrostatics and temperature on morphological transitions of hydrogel nanostructures self-assembled by peptide amphiphiles via molecular dynamics simulations.
    Fu IW; Markegard CB; Chu BK; Nguyen HD
    Adv Healthc Mater; 2013 Oct; 2(10):1388-400. PubMed ID: 23554376
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tuning soft nanostructures in self-assembled supramolecular gels: from morphology control to morphology-dependent functions.
    Zhang L; Wang X; Wang T; Liu M
    Small; 2015 Mar; 11(9-10):1025-38. PubMed ID: 25384759
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.