These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 36444534)

  • 21. Programmable Construction of Peptide-Based Materials in Living Subjects: From Modular Design and Morphological Control to Theranostics.
    Li LL; Qiao ZY; Wang L; Wang H
    Adv Mater; 2019 Nov; 31(45):e1804971. PubMed ID: 30450607
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fluidic supramolecular nano- and microfibres as molecular rails for regulated movement of nanosubstances.
    Tamaru S; Ikeda M; Shimidzu Y; Matsumoto S; Takeuchi S; Hamachi I
    Nat Commun; 2010 May; 1():20. PubMed ID: 20975676
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Organic-inorganic nanoflowers: from design strategy to biomedical applications.
    Liu Y; Ji X; He Z
    Nanoscale; 2019 Oct; 11(37):17179-17194. PubMed ID: 31532431
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Tuning of the Supramolecular Helicity of Peptide-Based Gel Nanofibers.
    Misra S; Singh P; Singh AK; Roy L; Kuila S; Dey S; Mahapatra AK; Nanda J
    J Phys Chem B; 2022 Dec; 126(51):10882-10892. PubMed ID: 36516185
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Multivalent Presentation of Cationic Peptides on Supramolecular Nanofibers for Antimicrobial Activity.
    Beter M; Kara HK; Topal AE; Dana A; Tekinay AB; Guler MO
    Mol Pharm; 2017 Nov; 14(11):3660-3668. PubMed ID: 29020766
    [TBL] [Abstract][Full Text] [Related]  

  • 26. In Situ, Noncovalent Labeling and Stimulated Emission Depletion-Based Super-Resolution Imaging of Supramolecular Peptide Nanostructures.
    Kumar M; Son J; Huang RH; Sementa D; Lee M; O'Brien S; Ulijn RV
    ACS Nano; 2020 Nov; 14(11):15056-15063. PubMed ID: 33169979
    [TBL] [Abstract][Full Text] [Related]  

  • 27. DNA Nanostructure as Smart Carriers for Drug Delivery.
    Ouyang X; Chao J; Su S; Fan C
    Methods Mol Biol; 2017; 1500():121-132. PubMed ID: 27813005
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Self-assembled DNA nanostructures prepared by rolling circle amplification for the delivery of siRNA conjugates.
    Hong CA; Jang B; Jeong EH; Jeong H; Lee H
    Chem Commun (Camb); 2014 Nov; 50(86):13049-51. PubMed ID: 24967959
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Environment-sensitive fluorescent supramolecular nanofibers for imaging applications.
    Cai Y; Shi Y; Wang H; Wang J; Ding D; Wang L; Yang Z
    Anal Chem; 2014 Feb; 86(4):2193-9. PubMed ID: 24467604
    [TBL] [Abstract][Full Text] [Related]  

  • 30. From Folding to Assembly: Functional Supramolecular Architectures of Peptides Comprised of Non-Canonical Amino Acids.
    Misra R; Rudnick-Glick S; Adler-Abramovich L
    Macromol Biosci; 2021 Aug; 21(8):e2100090. PubMed ID: 34142442
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nanoscale Structures and Materials from the Self-assembly of Polypeptides and DNA.
    Bernal-Chanchavac J; Al-Amin M; Stephanopoulos N
    Curr Top Med Chem; 2022; 22(8):699-712. PubMed ID: 34911426
    [TBL] [Abstract][Full Text] [Related]  

  • 32. DNA-Functionalized Supramolecular Polymers: Dynamic Multicomponent Assemblies with Emergent Properties.
    Wijnands SPW; Meijer EW; Merkx M
    Bioconjug Chem; 2019 Jul; 30(7):1905-1914. PubMed ID: 30860819
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cyanine-Mediated DNA Nanofiber Growth with Controlled Dimensionality.
    Bousmail D; Chidchob P; Sleiman HF
    J Am Chem Soc; 2018 Aug; 140(30):9518-9530. PubMed ID: 29985613
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Self-Assembled DNA Nanoflowers Triggered by a DNA Walker for Highly Sensitive Electrochemical Detection of
    Cai R; Zhang S; Chen L; Li M; Zhang Y; Zhou N
    ACS Appl Mater Interfaces; 2021 Feb; 13(4):4905-4914. PubMed ID: 33470807
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tuning the matrix metalloproteinase-1 degradability of peptide amphiphile nanofibers through supramolecular engineering.
    Shi Y; Ferreira DS; Banerjee J; Pickford AR; Azevedo HS
    Biomater Sci; 2019 Dec; 7(12):5132-5142. PubMed ID: 31576824
    [TBL] [Abstract][Full Text] [Related]  

  • 36. DNA nanoflowers for multiplexed cellular imaging and traceable targeted drug delivery.
    Hu R; Zhang X; Zhao Z; Zhu G; Chen T; Fu T; Tan W
    Angew Chem Int Ed Engl; 2014 Jun; 53(23):5821-6. PubMed ID: 24753303
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Amino acid conformations control the morphological and chiral features of the self-assembled peptide nanostructures: Young investigators perspective.
    Zhou P; Wang J; Wang M; Hou J; Lu JR; Xu H
    J Colloid Interface Sci; 2019 Jul; 548():244-254. PubMed ID: 31004957
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Peptide Nanomaterials Designed from Natural Supramolecular Systems.
    Inaba H; Matsuura K
    Chem Rec; 2019 May; 19(5):843-858. PubMed ID: 30375148
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Peptide-based bioactivated
    Li R; Ren H; Liu X; Chen Z; Li L; Wang H
    Sheng Wu Gong Cheng Xue Bao; 2022 Feb; 38(2):650-665. PubMed ID: 35234388
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Supramolecular self-assembled peptide-engineered nanofibers: A propitious proposition for cancer therapy.
    Pandey G; Phatale V; Khairnar P; Kolipaka T; Shah S; Famta P; Jain N; Srinivasarao DA; Rajinikanth PS; Raghuvanshi RS; Srivastava S
    Int J Biol Macromol; 2024 Jan; 256(Pt 2):128452. PubMed ID: 38042321
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.