BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 36444807)

  • 1. Source, environmental behavior and potential health risk of rare earth elements in Beijing urban park soils.
    Liu Q; Shi H; An Y; Ma J; Zhao W; Qu Y; Chen H; Liu L; Wu F
    J Hazard Mater; 2023 Mar; 445():130451. PubMed ID: 36444807
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Geochemical Behaviors of Rare Earth Elements (REEs) in Karst Soils under Different Land-Use Types: A Case in Yinjiang Karst Catchment, Southwest China.
    Han R; Xu Z
    Int J Environ Res Public Health; 2021 Jan; 18(2):. PubMed ID: 33435431
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RARE-EARTH elements in the topsoils of a Russian industrial city: Sources and human health risk assessment.
    Krupnova T; Rakova O; Simakhina V
    Chemosphere; 2024 Jun; 357():142059. PubMed ID: 38653397
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Geochemical behavior of rare earth elements in agricultural soils along the Syr Darya River within the Aral Sea Basin.
    Li Y; Saparov G; Zeng T; Abuduwaili J; Ma L
    Environ Monit Assess; 2024 May; 196(5):493. PubMed ID: 38691227
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rare earth elements in the upland soils of northern China: Spatial variation, relationships, and risk assessment.
    Lian Z; Han Y; Zhao X; Xue Y; Gu X
    Chemosphere; 2022 Nov; 307(Pt 3):136062. PubMed ID: 35981620
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Water, sediment and agricultural soil contamination from an ion-adsorption rare earth mining area.
    Liu WS; Guo MN; Liu C; Yuan M; Chen XT; Huot H; Zhao CM; Tang YT; Morel JL; Qiu RL
    Chemosphere; 2019 Feb; 216():75-83. PubMed ID: 30359919
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Geochemical signatures and natural background values of rare earth elements in soils of Brazilian Amazon.
    Ferreira MDS; Fontes MPF; Bellato CR; Marques Neto JO; Lima HN; Fendorf S
    Environ Pollut; 2021 May; 277():116743. PubMed ID: 33640811
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A human health risk assessment of rare earth elements in soil and vegetables from a mining area in Fujian Province, Southeast China.
    Li X; Chen Z; Chen Z; Zhang Y
    Chemosphere; 2013 Oct; 93(6):1240-6. PubMed ID: 23891580
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antimony, beryllium, cobalt, and vanadium in urban park soils in Beijing: Machine learning-based source identification and health risk-based soil environmental criteria.
    Wu Y; Liu Q; Ma J; Zhao W; Chen H; Qu Y
    Environ Pollut; 2022 Jan; 293():118554. PubMed ID: 34801621
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatial distribution, source apportionment, and ecological risk assessment of elements (PTEs, REEs, and ENs) in the surface soil of shiraz city (Iran) under different land-use types.
    Hoshyari E; Hassanzadeh N; Keshavarzi B; Jaafarzadeh N; Rezaei M
    Chemosphere; 2023 Jan; 311(Pt 1):137045. PubMed ID: 36419265
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anomalous abundance and redistribution patterns of rare earth elements in soils of a mining area in Inner Mongolia, China.
    Wang L; Liang T
    Environ Sci Pollut Res Int; 2016 Jun; 23(11):11330-11338. PubMed ID: 26931660
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Abundance, spatial variation, and sources of rare earth elements in soils around ion-adsorbed rare earth mining areas.
    Li W; Zuo Y; Wang L; Wan X; Yang J; Liang T; Song H; Weihrauch C; Rinklebe J
    Environ Pollut; 2022 Nov; 313():120099. PubMed ID: 36084740
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cryptic footprints of rare earth elements on natural resources and living organisms.
    Adeel M; Lee JY; Zain M; Rizwan M; Nawab A; Ahmad MA; Shafiq M; Yi H; Jilani G; Javed R; Horton R; Rui Y; Tsang DCW; Xing B
    Environ Int; 2019 Jun; 127():785-800. PubMed ID: 31039528
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel method to analyze the spatial distribution and potential sources of pollutant combinations in the soil of Beijing urban parks.
    Liu Q; Wu Y; Zhou Y; Li X; Yang S; Chen Y; Qu Y; Ma J
    Environ Pollut; 2021 Sep; 284():117191. PubMed ID: 33930780
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heavy metal(loid)s in the topsoil of urban parks in Beijing, China: Concentrations, potential sources, and risk assessment.
    Liu L; Liu Q; Ma J; Wu H; Qu Y; Gong Y; Yang S; An Y; Zhou Y
    Environ Pollut; 2020 May; 260():114083. PubMed ID: 32041032
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Distribution and Environmental Significance of Rare Earth Elements in Typical Protected Vegetable Soil, Northern China].
    Wang ZW; Liu YM; Wang ZL; Miao YT
    Huan Jing Ke Xue; 2022 Apr; 43(4):2071-2080. PubMed ID: 35393831
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rare earth elements in surface specific urban runoff in Northern Beijing.
    Shajib MTI; Hansen HCB; Liang T; Holm PE
    Sci Total Environ; 2020 May; 717():136969. PubMed ID: 32062247
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Geochemical fractions of rare earth elements in soil around a mine tailing in Baotou, China.
    Wang L; Liang T
    Sci Rep; 2015 Jul; 5():12483. PubMed ID: 26198417
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of exogenous rare earth elements on phosphorus adsorption and desorption in different types of soils.
    Wang L; Liang T
    Chemosphere; 2014 May; 103():148-55. PubMed ID: 24342358
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Watershed scale assessment of rare earth elements in soils derived from sedimentary rocks.
    de Albuquerque Pereira B; da Silva YJAB; do Nascimento CWA; da Silva YJAB; Nascimento RC; Boechat CL; Barbosa RS; Singh VP
    Environ Monit Assess; 2019 Jul; 191(8):514. PubMed ID: 31346771
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.