These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 36444861)

  • 1. System truncation accelerates binding affinity calculations with the fragment molecular orbital method: A benchmark study.
    Nakamura S; Akaki T; Nishiwaki K; Nakatani M; Kawase Y; Takahashi Y; Nakanishi I
    J Comput Chem; 2023 Mar; 44(7):824-831. PubMed ID: 36444861
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fragment Molecular Orbital Based Affinity Prediction toward Pyruvate Dehydrogenase Kinases: Insights into the Charge Transfer in Hydrogen Bond Networks.
    Akaki T; Nakamura S; Nishiwaki K; Nakanishi I
    Chem Pharm Bull (Tokyo); 2023 Apr; 71(4):299-306. PubMed ID: 36724968
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The polarizable continuum model (PCM) interfaced with the fragment molecular orbital method (FMO).
    Fedorov DG; Kitaura K; Li H; Jensen JH; Gordon MS
    J Comput Chem; 2006 Jun; 27(8):976-85. PubMed ID: 16604514
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analytic gradient for second order Møller-Plesset perturbation theory with the polarizable continuum model based on the fragment molecular orbital method.
    Nagata T; Fedorov DG; Li H; Kitaura K
    J Chem Phys; 2012 May; 136(20):204112. PubMed ID: 22667545
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving the accuracy of the FMO binding affinity prediction of ligand-receptor complexes containing metals.
    Paciotti R; Marrone A; Coletti C; Re N
    J Comput Aided Mol Des; 2023 Dec; 37(12):707-719. PubMed ID: 37743428
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment and acceleration of binding energy calculations for protein-ligand complexes by the fragment molecular orbital method.
    Otsuka T; Okimoto N; Taiji M
    J Comput Chem; 2015 Nov; 36(30):2209-18. PubMed ID: 26400829
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of cyclin-dependent kinase 2 inhibitor potency using the fragment molecular orbital method.
    Mazanetz MP; Ichihara O; Law RJ; Whittaker M
    J Cheminform; 2011 Jan; 3(1):2. PubMed ID: 21219630
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular recognition mechanism of FK506 binding protein: an all-electron fragment molecular orbital study.
    Nakanishi I; Fedorov DG; Kitaura K
    Proteins; 2007 Jul; 68(1):145-58. PubMed ID: 17387719
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energy gradients in combined fragment molecular orbital and polarizable continuum model (FMO/PCM) calculation.
    Li H; Fedorov DG; Nagata T; Kitaura K; Jensen JH; Gordon MS
    J Comput Chem; 2010 Mar; 31(4):778-90. PubMed ID: 19569184
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The fragment molecular orbital method combined with density-functional tight-binding and the polarizable continuum model.
    Nishimoto Y; Fedorov DG
    Phys Chem Chem Phys; 2016 Aug; 18(32):22047-61. PubMed ID: 27215663
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ab initio base fragment molecular orbital studies of influenza viral hemagglutinin HA1 full-domains in complex with sialoside receptors.
    Sawada T; Hashimoto T; Tokiwa H; Suzuki T; Nakano H; Ishida H; Kiso M; Suzuki Y
    J Mol Genet Med; 2008 Nov; 3(1):133-42. PubMed ID: 19565017
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Importance of dispersion and electron correlation in ab initio protein folding.
    He X; Fusti-Molnar L; Cui G; Merz KM
    J Phys Chem B; 2009 Apr; 113(15):5290-300. PubMed ID: 19320454
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RI-MP3 calculations of biomolecules based on the fragment molecular orbital method.
    Ishikawa T; Sakakura K; Mochizuki Y
    J Comput Chem; 2018 Sep; 39(24):1970-1978. PubMed ID: 30277590
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multilayer formulation of the fragment molecular orbital method (FMO).
    Fedorov DG; Ishida T; Kitaura K
    J Phys Chem A; 2005 Mar; 109(11):2638-46. PubMed ID: 16833570
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RI-MP2 Gradient Calculation of Large Molecules Using the Fragment Molecular Orbital Method.
    Ishikawa T; Kuwata K
    J Phys Chem Lett; 2012 Feb; 3(3):375-9. PubMed ID: 26285854
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effective fragment molecular orbital method for fragments connected by covalent bonds.
    Steinmann C; Fedorov DG; Jensen JH
    PLoS One; 2012; 7(7):e41117. PubMed ID: 22844433
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ab initio quantum mechanical study of the binding energies of human estrogen receptor alpha with its ligands: an application of fragment molecular orbital method.
    Fukuzawa K; Kitaura K; Uebayasi M; Nakata K; Kaminuma T; Nakano T
    J Comput Chem; 2005 Jan; 26(1):1-10. PubMed ID: 15521089
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ab initio study of hydrogen-bond formation between aliphatic and phenolic hydroxy groups and selected amino acid side chains.
    Nagy PI; Erhardt PW
    J Phys Chem A; 2008 May; 112(18):4342-54. PubMed ID: 18373368
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ab initio fragment molecular orbital study of ligand binding to human progesterone receptor ligand-binding domain.
    Harada T; Yamagishi K; Nakano T; Kitaura K; Tokiwa H
    Naunyn Schmiedebergs Arch Pharmacol; 2008 Jun; 377(4-6):607-15. PubMed ID: 18330543
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accuracy of the three-body fragment molecular orbital method applied to Møller-Plesset perturbation theory.
    Fedorov DG; Ishimura K; Ishida T; Kitaura K; Pulay P; Nagase S
    J Comput Chem; 2007 Jul; 28(9):1476-1484. PubMed ID: 17330884
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.