BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 36444917)

  • 1. Lumican accumulates with fibrillar collagen in fibrosis in hypertrophic cardiomyopathy.
    Rixon C; Andreassen K; Shen X; Erusappan PM; Almaas VM; Palmero S; Dahl CP; Ueland T; Sjaastad I; Louch WE; Stokke MK; Tønnessen T; Christensen G; Lunde IG
    ESC Heart Fail; 2023 Apr; 10(2):858-871. PubMed ID: 36444917
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Moderate Loss of the Extracellular Matrix Proteoglycan Lumican Attenuates Cardiac Fibrosis in Mice Subjected to Pressure Overload.
    Mohammadzadeh N; Melleby AO; Palmero S; Sjaastad I; Chakravarti S; Engebretsen KVT; Christensen G; Lunde IG; Tønnessen T
    Cardiology; 2020; 145(3):187-198. PubMed ID: 31968347
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CCN2 plays a key role in extracellular matrix gene expression in severe hypertrophic cardiomyopathy and heart failure.
    Tsoutsman T; Wang X; Garchow K; Riser B; Twigg S; Semsarian C
    J Mol Cell Cardiol; 2013 Sep; 62():164-78. PubMed ID: 23756156
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lumican is increased in experimental and clinical heart failure, and its production by cardiac fibroblasts is induced by mechanical and proinflammatory stimuli.
    Engebretsen KV; Lunde IG; Strand ME; Waehre A; Sjaastad I; Marstein HS; Skrbic B; Dahl CP; Askevold ET; Christensen G; Bjørnstad JL; Tønnessen T
    FEBS J; 2013 May; 280(10):2382-98. PubMed ID: 23480731
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The extracellular matrix proteoglycan lumican improves survival and counteracts cardiac dilatation and failure in mice subjected to pressure overload.
    Mohammadzadeh N; Lunde IG; Andenæs K; Strand ME; Aronsen JM; Skrbic B; Marstein HS; Bandlien C; Nygård S; Gorham J; Sjaastad I; Chakravarti S; Christensen G; Engebretsen KVT; Tønnessen T
    Sci Rep; 2019 Jun; 9(1):9206. PubMed ID: 31235849
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differences in microRNA-29 and Pro-fibrotic Gene Expression in Mouse and Human Hypertrophic Cardiomyopathy.
    Liu Y; Afzal J; Vakrou S; Greenland GV; Talbot CC; Hebl VB; Guan Y; Karmali R; Tardiff JC; Leinwand LA; Olgin JE; Das S; Fukunaga R; Abraham MR
    Front Cardiovasc Med; 2019; 6():170. PubMed ID: 31921893
    [No Abstract]   [Full Text] [Related]  

  • 7. Myocardial fibrosis in patients with symptomatic obstructive hypertrophic cardiomyopathy: correlation with echocardiographic measurements, sarcomeric genotypes, and pro-left ventricular hypertrophy polymorphisms involving the renin-angiotensin-aldosterone system.
    Blauwet LA; Ackerman MJ; Edwards WD; Riehle DL; Ommen SR
    Cardiovasc Pathol; 2009; 18(5):262-8. PubMed ID: 18835191
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Beneficial effects of exercise initiated before development of hypertrophic cardiomyopathy in genotype-positive mice.
    Andreassen K; Rixon C; Hansen MH; Hauge-Iversen IM; Zhang L; Sadredini M; Erusappan PM; Sjaastad I; Christensen G; Haugaa KH; Edvardsen T; Lunde IG; Stokke MK
    Am J Physiol Heart Circ Physiol; 2023 Jun; 324(6):H881-H892. PubMed ID: 37115627
    [TBL] [Abstract][Full Text] [Related]  

  • 9. T1 measurements identify extracellular volume expansion in hypertrophic cardiomyopathy sarcomere mutation carriers with and without left ventricular hypertrophy.
    Ho CY; Abbasi SA; Neilan TG; Shah RV; Chen Y; Heydari B; Cirino AL; Lakdawala NK; Orav EJ; González A; López B; Díez J; Jerosch-Herold M; Kwong RY
    Circ Cardiovasc Imaging; 2013 May; 6(3):415-22. PubMed ID: 23549607
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploration of Mediators Associated with Myocardial Remodelling in Feline Hypertrophic Cardiomyopathy.
    Cheng WC; Lawson C; Liu HH; Wilkie L; Dobromylskyj M; Luis Fuentes V; Dudhia J; Connolly DJ
    Animals (Basel); 2023 Jun; 13(13):. PubMed ID: 37443910
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comprehensive evaluation of myocardial fibrosis in hypertrophic cardiomyopathy with cardiac magnetic resonance imaging: linking genotype with fibrotic phenotype.
    Ellims AH; Iles LM; Ling LH; Chong B; Macciocca I; Slavin GS; Hare JL; Kaye DM; Marasco SF; McLean CA; James PA; du Sart D; Taylor AJ
    Eur Heart J Cardiovasc Imaging; 2014 Oct; 15(10):1108-16. PubMed ID: 24819852
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sex Differences at the Time of Myectomy in Hypertrophic Cardiomyopathy.
    Nijenkamp LLAM; Bollen IAE; van Velzen HG; Regan JA; van Slegtenhorst M; Niessen HWM; Schinkel AFL; Krüger M; Poggesi C; Ho CY; Kuster DWD; Michels M; van der Velden J
    Circ Heart Fail; 2018 Jun; 11(6):e004133. PubMed ID: 29853478
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proteomic Analysis of the Myocardium in Hypertrophic Obstructive Cardiomyopathy.
    Coats CJ; Heywood WE; Virasami A; Ashrafi N; Syrris P; Dos Remedios C; Treibel TA; Moon JC; Lopes LR; McGregor CGA; Ashworth M; Sebire NJ; McKenna WJ; Mills K; Elliott PM
    Circ Genom Precis Med; 2018 Dec; 11(12):e001974. PubMed ID: 30562113
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Morphology and significance of the left ventricular collagen network in young patients with hypertrophic cardiomyopathy and sudden cardiac death.
    Shirani J; Pick R; Roberts WC; Maron BJ
    J Am Coll Cardiol; 2000 Jan; 35(1):36-44. PubMed ID: 10636256
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aldosterone, through novel signaling proteins, is a fundamental molecular bridge between the genetic defect and the cardiac phenotype of hypertrophic cardiomyopathy.
    Tsybouleva N; Zhang L; Chen S; Patel R; Lutucuta S; Nemoto S; DeFreitas G; Entman M; Carabello BA; Roberts R; Marian AJ
    Circulation; 2004 Mar; 109(10):1284-91. PubMed ID: 14993121
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surgical pathology of subaortic septal myectomy: histology skips over clinical diagnosis.
    Abecasis J; Gouveia R; Castro M; Andrade MJ; Ribeiras R; Ramos S; Abecasis M; Cardim N; Gil V
    Cardiovasc Pathol; 2018; 33():32-38. PubMed ID: 29414430
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MicroRNAs as Biomarkers in Hypertrophic Cardiomyopathy: Current State of the Art.
    Angelopoulos A; Oikonomou E; Vogiatzi G; Antonopoulos A; Tsalamandris S; Georgakopoulos C; Papanikolaou P; Lazaros G; Charalambous G; Siasos G; Vlachopoulos C; Tousoulis D
    Curr Med Chem; 2021; 28(36):7400-7412. PubMed ID: 33820510
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Patterns of myocardial fibrosis in idiopathic cardiomyopathies and chronic Chagasic cardiopathy.
    Rossi MA
    Can J Cardiol; 1991 Sep; 7(7):287-94. PubMed ID: 1933634
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization and quantitation of extracellular collagen matrix in myocardium of pigs with spontaneously occurring hypertrophic cardiomyopathy.
    Chiu YT; Liu SK; Liu M; Chen SP; Lin YH; Mao SJ; Chu R
    Cardiovasc Pathol; 1999; 8(3):169-75. PubMed ID: 10722240
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Scleraxis as a prognostic marker of myocardial fibrosis in hypertrophic cardiomyopathy (SPARC) study.
    Zhu A; Bews H; Cheung D; Nagalingam RS; Mittal I; Goyal V; Asselin CY; Kirkpatrick IDC; Czubryt MP; Jassal DS
    Can J Physiol Pharmacol; 2020 Jul; 98(7):459-465. PubMed ID: 32027517
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.