These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 36444984)

  • 1. Improving the accuracy of single-trial fMRI response estimates using GLMsingle.
    Prince JS; Charest I; Kurzawski JW; Pyles JA; Tarr MJ; Kay KN
    Elife; 2022 Nov; 11():. PubMed ID: 36444984
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GLMdenoise: a fast, automated technique for denoising task-based fMRI data.
    Kay KN; Rokem A; Winawer J; Dougherty RF; Wandell BA
    Front Neurosci; 2013; 7():247. PubMed ID: 24381539
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GLMdenoise improves multivariate pattern analysis of fMRI data.
    Charest I; Kriegeskorte N; Kay KN
    Neuroimage; 2018 Dec; 183():606-616. PubMed ID: 30170148
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of trial-to-trial variability on optimal event-related fMRI design: Implications for Beta-series correlation and multi-voxel pattern analysis.
    Abdulrahman H; Henson RN
    Neuroimage; 2016 Jan; 125():756-766. PubMed ID: 26549299
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inverse transformed encoding models - a solution to the problem of correlated trial-by-trial parameter estimates in fMRI decoding.
    Soch J; Allefeld C; Haynes JD
    Neuroimage; 2020 Apr; 209():116449. PubMed ID: 31866165
    [TBL] [Abstract][Full Text] [Related]  

  • 6. EEG spatiospectral patterns and their link to fMRI BOLD signal via variable hemodynamic response functions.
    Labounek R; Bridwell DA; Mareček R; Lamoš M; Mikl M; Bednařík P; Baštinec J; Slavíček T; Hluštík P; Brázdil M; Jan J
    J Neurosci Methods; 2019 Apr; 318():34-46. PubMed ID: 30802472
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using the General Linear Model to Improve Performance in fNIRS Single Trial Analysis and Classification: A Perspective.
    von Lühmann A; Ortega-Martinez A; Boas DA; Yücel MA
    Front Hum Neurosci; 2020; 14():30. PubMed ID: 32132909
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiclass fMRI data decoding and visualization using supervised self-organizing maps.
    Hausfeld L; Valente G; Formisano E
    Neuroimage; 2014 Aug; 96():54-66. PubMed ID: 24531045
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Feature-reweighted representational similarity analysis: A method for improving the fit between computational models, brains, and behavior.
    Kaniuth P; Hebart MN
    Neuroimage; 2022 Aug; 257():119294. PubMed ID: 35580810
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inter-subject correlation in fMRI: method validation against stimulus-model based analysis.
    Pajula J; Kauppi JP; Tohka J
    PLoS One; 2012; 7(8):e41196. PubMed ID: 22924089
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimizing multivariate pattern classification in rapid event-related designs.
    Stehr DA; Garcia JO; Pyles JA; Grossman ED
    J Neurosci Methods; 2023 Mar; 387():109808. PubMed ID: 36738848
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recording human electrocorticographic (ECoG) signals for neuroscientific research and real-time functional cortical mapping.
    Hill NJ; Gupta D; Brunner P; Gunduz A; Adamo MA; Ritaccio A; Schalk G
    J Vis Exp; 2012 Jun; (64):. PubMed ID: 22782131
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A mixed L2 norm regularized HRF estimation method for rapid event-related fMRI experiments.
    Lei Y; Tong L; Yan B
    Comput Math Methods Med; 2013; 2013():643129. PubMed ID: 23762193
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatially adaptive mixture modeling for analysis of FMRI time series.
    Vincent T; Risser L; Ciuciu P
    IEEE Trans Med Imaging; 2010 Apr; 29(4):1059-74. PubMed ID: 20350840
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Utilizing temporal information in fMRI decoding: classifier using kernel regression methods.
    Chu C; Mourão-Miranda J; Chiu YC; Kriegeskorte N; Tan G; Ashburner J
    Neuroimage; 2011 Sep; 58(2):560-71. PubMed ID: 21729756
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sensitivity and specificity considerations for fMRI encoding, decoding, and mapping of auditory cortex at ultra-high field.
    Moerel M; De Martino F; Kemper VG; Schmitter S; Vu AT; Uğurbil K; Formisano E; Yacoub E
    Neuroimage; 2018 Jan; 164():18-31. PubMed ID: 28373123
    [TBL] [Abstract][Full Text] [Related]  

  • 17. fMRIflows: A Consortium of Fully Automatic Univariate and Multivariate fMRI Processing Pipelines.
    Notter MP; Herholz P; Da Costa S; Gulban OF; Isik AI; Gaglianese A; Murray MM
    Brain Topogr; 2023 Mar; 36(2):172-191. PubMed ID: 36575327
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A massive 7T fMRI dataset to bridge cognitive neuroscience and artificial intelligence.
    Allen EJ; St-Yves G; Wu Y; Breedlove JL; Prince JS; Dowdle LT; Nau M; Caron B; Pestilli F; Charest I; Hutchinson JB; Naselaris T; Kay K
    Nat Neurosci; 2022 Jan; 25(1):116-126. PubMed ID: 34916659
    [TBL] [Abstract][Full Text] [Related]  

  • 19. BrainIAK tutorials: User-friendly learning materials for advanced fMRI analysis.
    Kumar M; Ellis CT; Lu Q; Zhang H; Capotă M; Willke TL; Ramadge PJ; Turk-Browne NB; Norman KA
    PLoS Comput Biol; 2020 Jan; 16(1):e1007549. PubMed ID: 31940340
    [TBL] [Abstract][Full Text] [Related]  

  • 20. rsHRF: A toolbox for resting-state HRF estimation and deconvolution.
    Wu GR; Colenbier N; Van Den Bossche S; Clauw K; Johri A; Tandon M; Marinazzo D
    Neuroimage; 2021 Dec; 244():118591. PubMed ID: 34560269
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.