These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 36445137)

  • 1. Metabolic and Microbial Community Engineering for Four-Carbon Dicarboxylic Acid Production from CO
    Hidese R; Matsuda M; Kajikawa M; Osanai T; Kondo A; Hasunuma T
    ACS Synth Biol; 2022 Dec; 11(12):4054-4064. PubMed ID: 36445137
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Four-carbon dicarboxylic acid production through the reductive branch of the open cyanobacterial tricarboxylic acid cycle in Synechocystis sp. PCC 6803.
    Iijima H; Watanabe A; Sukigara H; Iwazumi K; Shirai T; Kondo A; Osanai T
    Metab Eng; 2021 May; 65():88-98. PubMed ID: 33722652
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temperature enhanced succinate production concurrent with increased central metabolism turnover in the cyanobacterium Synechocystis sp. PCC 6803.
    Hasunuma T; Matsuda M; Kato Y; Vavricka CJ; Kondo A
    Metab Eng; 2018 Jul; 48():109-120. PubMed ID: 29847778
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved sugar-free succinate production by
    Hasunuma T; Matsuda M; Kondo A
    Metab Eng Commun; 2016 Dec; 3():130-141. PubMed ID: 29468119
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High yield production of four-carbon dicarboxylic acids by metabolically engineered Escherichia coli.
    Martinez I; Gao H; Bennett GN; San KY
    J Ind Microbiol Biotechnol; 2018 Jan; 45(1):53-60. PubMed ID: 29196893
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Production of succinate by engineered strains of Synechocystis PCC 6803 overexpressing phosphoenolpyruvate carboxylase and a glyoxylate shunt.
    Durall C; Kukil K; Hawkes JA; Albergati A; Lindblad P; Lindberg P
    Microb Cell Fact; 2021 Feb; 20(1):39. PubMed ID: 33557832
    [TBL] [Abstract][Full Text] [Related]  

  • 7. C4-dicarboxylic acid production by overexpressing the reductive TCA pathway.
    Zhang T; Ge C; Deng L; Tan T; Wang F
    FEMS Microbiol Lett; 2015 May; 362(9):. PubMed ID: 25862576
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Overexpression of a C
    Yang L; Christakou E; Vang J; Lübeck M; Lübeck PS
    Microb Cell Fact; 2017 Mar; 16(1):43. PubMed ID: 28288640
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolically engineered Escherichia coli for biotechnological production of four-carbon 1,4-dicarboxylic acids.
    Cao Y; Cao Y; Lin X
    J Ind Microbiol Biotechnol; 2011 Jun; 38(6):649-56. PubMed ID: 21113642
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic engineering of Aspergillus oryzae for efficient production of l-malate directly from corn starch.
    Liu J; Li J; Shin HD; Du G; Chen J; Liu L
    J Biotechnol; 2017 Nov; 262():40-46. PubMed ID: 28965975
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-affinity l-malate transporter DcuE of Actinobacillus succinogenes catalyses reversible exchange of C4-dicarboxylates.
    Rhie MN; Cho YB; Lee YJ; Kim OB
    Environ Microbiol Rep; 2019 Apr; 11(2):129-139. PubMed ID: 30452121
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of Enzymatic Bottlenecks for the Aerobic Production of Malate from Glycerol by the Systematic Gene Overexpression of Anaplerotic Enzymes in
    Soto-Varela ZE; Cabrera G; Romero A; Cantero D; Valle A; Bolivar J
    Int J Mol Sci; 2021 Feb; 22(5):. PubMed ID: 33668723
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Increased incorporation of gaseous CO
    Park S; Lee JU; Cho S; Kim H; Oh HB; Pack SP; Lee J
    J Biotechnol; 2017 Jan; 241():101-107. PubMed ID: 27908774
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biosynthesis of platform chemical 3-hydroxypropionic acid (3-HP) directly from CO2 in cyanobacterium Synechocystis sp. PCC 6803.
    Wang Y; Sun T; Gao X; Shi M; Wu L; Chen L; Zhang W
    Metab Eng; 2016 Mar; 34():60-70. PubMed ID: 26546088
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering of Escherichia coli for Krebs cycle-dependent production of malic acid.
    Trichez D; Auriol C; Baylac A; Irague R; Dressaire C; Carnicer-Heras M; Heux S; François JM; Walther T
    Microb Cell Fact; 2018 Jul; 17(1):113. PubMed ID: 30012131
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reconstitution of oxaloacetate metabolism in the tricarboxylic acid cycle in Synechocystis sp. PCC 6803: discovery of important factors that directly affect the conversion of oxaloacetate.
    Ito S; Hakamada T; Ogino T; Osanai T
    Plant J; 2021 Mar; 105(6):1449-1458. PubMed ID: 33280178
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Properties of an inducible C 4 -dicarboxylic acid transport system in Bacillus subtilis.
    Ghei OK; Kay WW
    J Bacteriol; 1973 Apr; 114(1):65-79. PubMed ID: 4633350
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic engineering of Lactobacillus plantarum for succinic acid production through activation of the reductive branch of the tricarboxylic acid cycle.
    Tsuji A; Okada S; Hols P; Satoh E
    Enzyme Microb Technol; 2013 Jul; 53(2):97-103. PubMed ID: 23769309
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative insight into the metabolism of isoprene-producing Synechocystis sp. PCC 6803 using steady state
    Nirati Y; Purushotham N; Alagesan S
    Photosynth Res; 2022 Nov; 154(2):195-206. PubMed ID: 36070060
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fermentation of fumarate and L-malate by Clostridium formicoaceticum.
    Dorn M; Andreesen JR; Gottschalk G
    J Bacteriol; 1978 Jan; 133(1):26-32. PubMed ID: 618841
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.