BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

360 related articles for article (PubMed ID: 36445261)

  • 1. A tale of nucleic acid-ionizable lipid nanoparticles: Design and manufacturing technology and advancement.
    De A; Ko YT
    Expert Opin Drug Deliv; 2023 Jan; 20(1):75-91. PubMed ID: 36445261
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single pot organic solvent-free thermocycling technology for siRNA-ionizable LNPs: a proof-of-concept approach for alternative to microfluidics.
    De A; Ko YT
    Drug Deliv; 2022 Dec; 29(1):2644-2657. PubMed ID: 35949146
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Why mRNA-ionizable LNPs formulations are so short-lived: causes and way-out.
    De A; Ko YT
    Expert Opin Drug Deliv; 2023 Feb; 20(2):175-187. PubMed ID: 36588456
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lipid Nanoparticles Optimized for Targeting and Release of Nucleic Acid.
    Jia Y; Wang X; Li L; Li F; Zhang J; Liang XJ
    Adv Mater; 2024 Jan; 36(4):e2305300. PubMed ID: 37547955
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flash nanoprecipitation assisted self-assembly of ionizable lipid nanoparticles for nucleic acid delivery.
    Misra B; Hughes KA; Pentz WH; Samart P; Geldenhuys WJ; Bobbala S
    Nanoscale; 2024 Apr; 16(14):6939-6948. PubMed ID: 38511623
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cytosolic delivery of nucleic acids: The case of ionizable lipid nanoparticles.
    Schlich M; Palomba R; Costabile G; Mizrahy S; Pannuzzo M; Peer D; Decuzzi P
    Bioeng Transl Med; 2021 May; 6(2):e10213. PubMed ID: 33786376
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intracellular trafficking kinetics of nucleic acid escape from lipid nanoparticles via fluorescence imaging.
    M Bailey-Hytholt C; Ulinski G; Dugas J; Haines M; Lazebnik M; Piepenhagen P; E Zarraga I; Bandekar A
    Curr Pharm Biotechnol; 2023 Apr; ():. PubMed ID: 37016519
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nucleic Acid-Loaded Lipid Nanoparticle Interactions with Model Endosomal Membranes.
    Spadea A; Jackman M; Cui L; Pereira S; Lawrence MJ; Campbell RA; Ashford M
    ACS Appl Mater Interfaces; 2022 Jul; 14(26):30371-30384. PubMed ID: 35758331
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemistry of Lipid Nanoparticles for RNA Delivery.
    Eygeris Y; Gupta M; Kim J; Sahay G
    Acc Chem Res; 2022 Jan; 55(1):2-12. PubMed ID: 34850635
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Increasing the siRNA knockdown efficiency of lipid nanoparticles by morphological transformation with the use of dihydrosphingomyelin as a helper lipid.
    Hashimoto M; Yonezawa S; Furan S; Nitta C; Maeda N; Tomita K; Yokouchi A; Koide H; Asai T
    Biomater Sci; 2023 May; 11(9):3269-3277. PubMed ID: 36939181
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A fluorinated ionizable lipid improves the mRNA delivery efficiency of lipid nanoparticles.
    Huo H; Cheng X; Xu J; Lin J; Chen N; Lu X
    J Mater Chem B; 2023 May; 11(19):4171-4180. PubMed ID: 37129135
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of lipid components in lipid nanoparticles for vaccines and gene therapy.
    Hald Albertsen C; Kulkarni JA; Witzigmann D; Lind M; Petersson K; Simonsen JB
    Adv Drug Deliv Rev; 2022 Sep; 188():114416. PubMed ID: 35787388
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formulating and Characterizing Lipid Nanoparticles for Gene Delivery using a Microfluidic Mixing Platform.
    Bailey-Hytholt CM; Ghosh P; Dugas J; Zarraga IE; Bandekar A
    J Vis Exp; 2021 Feb; (168):. PubMed ID: 33720139
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lipid nanoparticles for siRNA delivery in cancer treatment.
    El Moukhtari SH; Garbayo E; Amundarain A; Pascual-Gil S; Carrasco-León A; Prosper F; Agirre X; Blanco-Prieto MJ
    J Control Release; 2023 Sep; 361():130-146. PubMed ID: 37532145
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrophobic scaffolds of pH-sensitive cationic lipids contribute to miscibility with phospholipids and improve the efficiency of delivering short interfering RNA by small-sized lipid nanoparticles.
    Sato Y; Okabe N; Note Y; Hashiba K; Maeki M; Tokeshi M; Harashima H
    Acta Biomater; 2020 Jan; 102():341-350. PubMed ID: 31733331
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lipid-nucleic acid nanoparticles of novel ionizable lipids for systemic BMP-9 gene delivery to bone-marrow mesenchymal stem cells for osteoinduction.
    Vhora I; Lalani R; Bhatt P; Patil S; Misra A
    Int J Pharm; 2019 May; 563():324-336. PubMed ID: 30954673
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ionizable Lipids from Click Reactions for Lipid Nanoparticle Assembling and mRNA Delivery.
    Xu F; Si X; Wang Y; Sun C; Liu M; Zhang Y; Xu X; Tian T
    J Phys Chem B; 2024 Apr; 128(15):3643-3651. PubMed ID: 38588455
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular-Level Structural Analysis of siRNA-Loaded Lipid Nanoparticles by
    Ueda K; Sakagawa Y; Saito T; Fujimoto T; Nakamura M; Sakuma F; Kaneko S; Tokumoto T; Nishimura K; Takeda J; Arai Y; Yamamoto K; Ikeda Y; Higashi K; Moribe K
    Mol Pharm; 2023 Sep; 20(9):4729-4742. PubMed ID: 37606988
    [No Abstract]   [Full Text] [Related]  

  • 19. Design of lipid-based nanoparticles for delivery of therapeutic nucleic acids.
    Mendonça MCP; Kont A; Kowalski PS; O'Driscoll CM
    Drug Discov Today; 2023 Mar; 28(3):103505. PubMed ID: 36708760
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent Advances in the Lipid Nanoparticle-Mediated Delivery of mRNA Vaccines.
    Swetha K; Kotla NG; Tunki L; Jayaraj A; Bhargava SK; Hu H; Bonam SR; Kurapati R
    Vaccines (Basel); 2023 Mar; 11(3):. PubMed ID: 36992242
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.