These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 36445268)
21. Evidence of Mars-Van-Krevelen Mechanism in the Electrochemical Oxygen Evolution on Ni-Based Catalysts. Ferreira de Araújo J; Dionigi F; Merzdorf T; Oh HS; Strasser P Angew Chem Int Ed Engl; 2021 Jun; 60(27):14981-14988. PubMed ID: 33830603 [TBL] [Abstract][Full Text] [Related]
22. Fe/Ni bimetal organic framework as efficient oxygen evolution catalyst with low overpotential. Zheng F; Zhang Z; Xiang D; Li P; Du C; Zhuang Z; Li X; Chen W J Colloid Interface Sci; 2019 Nov; 555():541-547. PubMed ID: 31404838 [TBL] [Abstract][Full Text] [Related]
23. Efficient and Stable Evolution of Oxygen Using Pulse-Electrodeposited Ir/Ni Oxide Catalyst in Fe-Spiked KOH Electrolyte. Gong L; Ren D; Deng Y; Yeo BS ACS Appl Mater Interfaces; 2016 Jun; 8(25):15985-90. PubMed ID: 27323252 [TBL] [Abstract][Full Text] [Related]
24. Solution-cast metal oxide thin film electrocatalysts for oxygen evolution. Trotochaud L; Ranney JK; Williams KN; Boettcher SW J Am Chem Soc; 2012 Oct; 134(41):17253-61. PubMed ID: 22991896 [TBL] [Abstract][Full Text] [Related]
25. Recent Advances in Porphyrin-Based Systems for Electrochemical Oxygen Evolution Reaction. Yao B; He Y; Wang S; Sun H; Liu X Int J Mol Sci; 2022 May; 23(11):. PubMed ID: 35682721 [TBL] [Abstract][Full Text] [Related]
26. NiFe (Oxy) Hydroxides Derived from NiFe Disulfides as an Efficient Oxygen Evolution Catalyst for Rechargeable Zn-Air Batteries: The Effect of Surface S Residues. Wang T; Nam G; Jin Y; Wang X; Ren P; Kim MG; Liang J; Wen X; Jang H; Han J; Huang Y; Li Q; Cho J Adv Mater; 2018 Jul; 30(27):e1800757. PubMed ID: 29782683 [TBL] [Abstract][Full Text] [Related]
27. Engineering Bimetal Synergistic Electrocatalysts Based on Metal-Organic Frameworks for Efficient Oxygen Evolution. Liu M; Kong L; Wang X; He J; Bu XH Small; 2019 Nov; 15(45):e1903410. PubMed ID: 31517439 [TBL] [Abstract][Full Text] [Related]
28. Introducing Fe Cai Z; Zhou D; Wang M; Bak SM; Wu Y; Wu Z; Tian Y; Xiong X; Li Y; Liu W; Siahrostami S; Kuang Y; Yang XQ; Duan H; Feng Z; Wang H; Sun X Angew Chem Int Ed Engl; 2018 Jul; 57(30):9392-9396. PubMed ID: 29889350 [TBL] [Abstract][Full Text] [Related]
29. Boosting Bifunctional Oxygen Electrocatalysis with 3D Graphene Aerogel-Supported Ni/MnO Particles. Fu G; Yan X; Chen Y; Xu L; Sun D; Lee JM; Tang Y Adv Mater; 2018 Feb; 30(5):. PubMed ID: 29235164 [TBL] [Abstract][Full Text] [Related]
30. An investigation of thin-film Ni-Fe oxide catalysts for the electrochemical evolution of oxygen. Louie MW; Bell AT J Am Chem Soc; 2013 Aug; 135(33):12329-37. PubMed ID: 23859025 [TBL] [Abstract][Full Text] [Related]
31. Direct Detection of Fe Feng C; She X; Xiao Y; Li Y Angew Chem Int Ed Engl; 2023 Feb; 62(9):e202218738. PubMed ID: 36583473 [TBL] [Abstract][Full Text] [Related]
32. Incorporating MoO Liu Y; Liu P; Men YL; Li Y; Peng C; Xi S; Pan YX ACS Appl Mater Interfaces; 2021 Jun; 13(22):26064-26073. PubMed ID: 34038083 [TBL] [Abstract][Full Text] [Related]
33. Surface Fluorination Engineering of NiFe Prussian Blue Analogue Derivatives for Highly Efficient Oxygen Evolution Reaction. Ma F; Wu Q; Liu M; Zheng L; Tong F; Wang Z; Wang P; Liu Y; Cheng H; Dai Y; Zheng Z; Fan Y; Huang B ACS Appl Mater Interfaces; 2021 Feb; 13(4):5142-5152. PubMed ID: 33480252 [TBL] [Abstract][Full Text] [Related]
34. Monolayer NiIr-Layered Double Hydroxide as a Long-Lived Efficient Oxygen Evolution Catalyst for Seawater Splitting. You H; Wu D; Si D; Cao M; Sun F; Zhang H; Wang H; Liu TF; Cao R J Am Chem Soc; 2022 Jun; 144(21):9254-9263. PubMed ID: 35535584 [TBL] [Abstract][Full Text] [Related]
35. Operando Analysis of NiFe and Fe Oxyhydroxide Electrocatalysts for Water Oxidation: Detection of Fe⁴⁺ by Mössbauer Spectroscopy. Chen JY; Dang L; Liang H; Bi W; Gerken JB; Jin S; Alp EE; Stahl SS J Am Chem Soc; 2015 Dec; 137(48):15090-3. PubMed ID: 26601790 [TBL] [Abstract][Full Text] [Related]
37. Oxygen-Doped Nickel Iron Phosphide Nanocube Arrays Grown on Ni Foam for Oxygen Evolution Electrocatalysis. Xi W; Yan G; Lang Z; Ma Y; Tan H; Zhu H; Wang Y; Li Y Small; 2018 Oct; 14(42):e1802204. PubMed ID: 30239123 [TBL] [Abstract][Full Text] [Related]
38. Mixed-metal hybrid ultramicroporous material (HUM) precursor to graphene-supported tetrataenite as a highly active and durable NPG catalyst for the OER. Haikal RR; Kumar A; O'Nolan D; Kumar N; Karakalos SG; Hassanien A; Zaworotko MJ; Alkordi MH Dalton Trans; 2021 Apr; 50(15):5311-5317. PubMed ID: 33881028 [TBL] [Abstract][Full Text] [Related]
39. Metal-Organic Gel-Derived Multimetal Oxides as Effective Electrocatalysts for the Oxygen Evolution Reaction. Cao Z; Jiang Z; Li Y; Huang C; Li Y ChemSusChem; 2019 Jun; 12(11):2480-2486. PubMed ID: 30866174 [TBL] [Abstract][Full Text] [Related]
40. Hydrothermal Synthesis of a rGO Nanosheet Enwrapped NiFe Nanoalloy for Superior Electrocatalytic Oxygen Evolution Reactions. Geng J; Kuai L; Kan E; Sang Y; Geng B Chemistry; 2016 Oct; 22(41):14480-3. PubMed ID: 27481204 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]